Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad>bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(\Rightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1); (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad=bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b-d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)( đpcm )
Có \(\frac{a}{b}< \frac{c}{d}=>a.d< c.b\)
<=>2018a.d<2018c.b
<=>2018a.d+c.d<2018c.b+c.d
<=>d(2018a+c)<c(2018b+d)
<=>đpcm
Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)
<=> \(a\left(b+d\right)>b\left(a+c\right)\)
<=> \(ab+ad>bc+ba\)
<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]
<=> \(a>b\)
=> \(\frac{a}{b}>\frac{a+c}{b+d}\)
Ta có:
\(\frac{a}{b+c+d}>\frac{a}{a+b+c+d};\frac{b}{a+c+d}>\frac{b}{a+c+b+d};\frac{c}{b+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{a+b+c}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+c+b+d}\)
\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}>\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)
Vì \(\frac{a}{b+c+d}< 1\Rightarrow\frac{a}{b+c+d}< \frac{a+c}{b+c+a+d}\)
\(\frac{b}{c+d+a}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{b+c+d}< 1\Rightarrow\frac{c}{b+c+d}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c}< 1\Rightarrow\frac{d}{a+b+c}< \frac{d+b}{a+b+c+d}\)
\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< \frac{a+c}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)
\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow1< \frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\)
Vậy a,b,c,d>0 thì \(1< \frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\left(đpcm\right)\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
Từ:\(\hept{\begin{cases}a< c\\c< d\\m< n\end{cases}}\Rightarrow a+c+m< c+d+n\)
\(\Rightarrow2\left(a+c+n\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)
=>A<1/2+1/3=5/6<3/2
lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy
k minh nha