\(a^2+b^2=c^2+d^2\)

Cmr \(a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Ta có : \(a^2+b^2=c^2+d^2\)

\(\Leftrightarrow a^2-c^2=d^2-b^2\)

\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)

Do \(a+b=c+d\Rightarrow a-c=d-b\)

\(\Rightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)

\(\Leftrightarrow\left(a-c\right)\left(a+c-b-d\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-c=0=d-b\\a+c=b+d\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=c\\d=b\end{matrix}\right.\\a+c=b+d\end{matrix}\right.\)

Với a = c ; d = b \(\Rightarrow a^{2012}+b^{2012}=c^{2012}+d^{2012}\left(đpcm\right)\)

Với \(a+c=b+d\)

\(a+b=c+d\)

\(\Rightarrow a+c+a+b=b+d+c+d\)

\(\Rightarrow2a=2d\Rightarrow a=d\Rightarrow a^{2012}=d^{2012}\left(1\right)\)

Lại có : \(a+c=b+d\)

\(\Rightarrow b=c\Rightarrow b^{2012}=c^{2012}\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow a^{2012}+b^{2012}=c^{2012}+d^{2012}\left(đpcm\right)\)

haha

5 tháng 3 2020

\(a^3+b^3=2c^3+8d^3\)

\(\Rightarrow a^3+b^3+c^3+d^3=3c^3+9d^3⋮9\)

Mà \(a^3+b^3+c^3+d^3-a-b-c-d⋮3\)

=> đpcm...

đây toan 6 ak mk làm trong sách nâng cao rùi

26 tháng 3 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=> a=k\)x\(b\)

       \(c=k\)x\(d\)

Rồi thay vào sẽ làm ra

CHÚC BẠN HOC 

27 tháng 3 2019

Trả lời...............

Đặt a/b=c/d=k

Suy ra a=k . b ; c=k . d

Đó từ đấy bạn chỉ cần thay số vào mà tính thôi

......................học tốt........................

6 tháng 2 2020

Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối 

phải trừ 3ab(a+b) chứ nhỉ ???

Vào địa chỉ này: 

https://olm.vn/hoi-dap/question/1100452.html 

Câu hỏi người ta đã hỏi rồi! 

Bạn chú ý tìm câu hỏi trước khi đặt câu hỏi

4 tháng 8 2017

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

4 tháng 8 2017

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)