Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Ta có: A ≥ |x-a+x-b|+|x-c+x-d|= |2x-a-b|+|c+d-2x| ≥ |2x-a-b-2x+c+d| = |c+d-a-b|
Dấu " = " xảy ra khi x-a và x-b cùng dấu hay x≤ a hoặc b ≤ x
x-c và x-b cùng dấu hay x≤ c hoặc d ≤ x
2x-a-b và c+d-2x cùng dấu hay x+b≤ 2x ≤ c+d
vậy GTNN của A=c+d-a-b khi b ≤ x ≤ c
Ta có : \(\left|x\right|\ge0\forall x\in R\)
=> \(\left|x\right|+\frac{4}{7}\ge\frac{4}{7}\forall x\in R\)
=> GTNN của biểu thức là \(\frac{4}{7}\) khi x = 0
Ta có : |x - 2010| \(\ge0\forall x\in R\)
|x - 1963| \(\ge0\forall x\in R\)
Nên |x - 2010| + |x - 1963| \(\ge0\forall x\in R\)
Mà x ko thể đồng thời có 2 giá trị nên
GTNN của biểu thức là : 2010 - 1963 = 47 khi x = 2010 hoặc 1963
a) Để A nguyên thì x - 2 ⋮ 3
=> x - 2 thuộc B(3) = { 0; 3; 6; 9; .... }
=> x thuộc { 2; 5; 8; 11; .... }
Vậy........
a) Để A là số nguyên <=> x - 2 \(⋮\)3
Ta có : x - 2 \(⋮\)3 => x - 2 \(\in\)B(3) = {0; 3; 6; 9; ...}
=> x = {2; 5; 8; 11; ....}
b) Để B là số nguyên <=> 5 \(⋮\)x + 3
Ta có : 5 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(5) = {1; 5; -1; -5}
Lập bảng :
x + 3 | 1 | 5 | -1 | -5 |
x | -2 | 2 | -4 | -8 |
Vậy x \(\in\) {-2; 2; -4; -8} thì B là số nguyên
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\ge0\)
Xảy ra khi \(\dfrac{a}{x}=\dfrac{b}{y}\)
Không mất tính tổng quát, giả sử a ≤ b ≤ c ≤ d
Rồi giải tiếp như Câu hỏi của FFPUBGAOVCFLOL