cho ABCD là hình thang, có DB là tia phân giác của góc D, AE là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0

góc BDC+góc BCD=90 độ

=>1/2*góc ADC+góc BCD=90 độ

=>3/2*góc BCD=60 độ

=>góc BCD=60 độ

=>góc BDC=30 độ

Xét ΔBDC vuông tại B có sin BDC=BC/CD

=>BC/8=1/2

=>BC=4cm

góc ABD=góc BDC

góc BDC=góc ADB

=>góc ABD=góc ADB

=>AB=AD=BC=4cm

C=8+4+4+4=20cm

28 tháng 3 2018

a) Tam giác ABDABD cân tại BB nên ˆBAK=180o−ˆABD2BAK^=180o−ABD^2

⇒ˆABK=45o−ˆB2⇒ˆAKC=ˆABC+ˆBAK=45o+ˆB2⇒ABK^=45o−B^2⇒AKC^=ABC^+BAK^=45o+B^2

ˆKAC=90o−(45o−ˆB2)=45o+ˆB2KAC^=90o−(45o−B^2)=45o+B^2

⇒ˆAKC=ˆKAC⇒ΔAKC⇒AKC^=KAC^⇒ΔAKC cân tại C

Tương tự ta cũng có ΔBALΔBAL cân tại B.

b) Áp dụng định lý ta - lét ta có :

IGHG=IGKC.BDHG.KCBD=DGDC.DCCG.ACAB=ABAC.ACAB=1IGHG=IGKC.BDHG.KCBD=DGDC.DCCG.ACAB=ABAC.ACAB=1

⇒IG=HG⇒⇒IG=HG⇒ tam giác IHGIHG vuông cân.

Chứng minh tương tự cũng có tam giác IGJIGJ vuông cân.

⇒ΔIHJ⇒ΔIHJ là tam giác vuông cân.

Hình gửi kèm

  • 32123.PNG
28 tháng 3 2018

mình ghi nhanh quá mình ghi lộn b) \(\frac{IG}{HG}=\frac{IG}{HC}.\frac{BD}{HG}.\frac{KC}{BD}=\frac{DG}{DC}.\frac{DC}{CG}.\frac{AC}{AB}=\frac{AB}{AC}.\frac{AC}{AB}=1\)

2 tháng 12 2019

D là điểm nào?

2 tháng 12 2019

Cho đường tròn (O, R). Từ điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm)

a, CMR OA là đường trung trực của đoạn BC

b, Gọi D là giao điểm của đoạn thẳng OA với (O). Kẻ dây BE của (O) song song với OD, kẻ bán kính OF vuông góc với CD. Chứng minh C, O, E thẳng hàng và EF là tia phân giác của góc CED

c, Vẽ đường tròn (A, AD). Gọi I, J lần lượt là giao điểm của đường thẳng ED và FD với đường tròn (A) (I, J khác D). Chứng minh rằng góc CEF= góc JID.