K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

Sửa đề: I là trung điểm của AB, K là trung điểm của CD

ABCD là hình bình hành

=>AB//CD và BA=CD(1)

I là trung điểm của AB

=>\(AI=IB=\dfrac{AB}{2}\left(2\right)\)

K là trung điểm của CD

=>\(KC=KD=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AI=IB=KC=KD

Xét tứ giác AICK có

AI//CK

AI=CK

Do đó: AICK là hình bình hành

=>AK//CI

Xét ΔBAM có

I là trung điểm của BA

IN//AM

Do đó: N là trung điểm của BM

=>BN=NM(4)

Xét ΔDNC có

K là trung điểm của DC

KM//NC

Do đó: M là trung điểm của DN

=>DM=MN(5)

Từ (4) và (5) suy ra DM=MN=NB

16 tháng 11 2021

a: Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

16 tháng 10 2023

Sửa đề: Chứng minh AK=KI=IC

a: Xét tứ giác BEDF có

DE//BF

DE=BF\(\left(DE=\dfrac{1}{2}AD;BF=\dfrac{1}{2}BC;AD=BC\right)\)

Do đó: BEDF là hình bình hành

b: BEDF là hình bình hành

=>BE//DF

Xét ΔAID có

E là trung điểm của AD

EK//ID

Do đó: K là trung điểm của AI

=>AK=KI

Xét ΔBKC có

F là trung điểm của CB

FI//BK

Do đó: I là trung điểm của KC

=>KI=IC

=>AK=KI=IC

12 tháng 2 2016

ai giúp mình với

30 tháng 9 2021

m là giao của bd và kc

18 tháng 12 2021

a: Xét tứ giác AECF có 

O là trung điểm của AC

O là trung điểm của FE

Do đó: AECF là hình bình hành

Suy ra: AE//CF

31 tháng 10 2020

A N B F C M D E O

a) Ta có : tứ giác ABCD là hình bình hành (gt)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của AC (1)

và O là trung điểm của BD

\(\Rightarrow OB=OD\)

mà \(DE=BF\left(gt\right)\)

\(\Rightarrow OB-BF=OD-DE\)

\(\Rightarrow OF=OE\)

\(\Rightarrow\)O là trung điểm của EF (2)

Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành

b) Ta có : tứ giác AECF là hinh bình hành (cma)

\(\Rightarrow AE//CF\)

\(\Rightarrow AM//CN\left(3\right)\)

Ta có : tứ giác ABCD là hinh bình hành (gt)

\(\Rightarrow AB//CD\)

\(\Rightarrow AN//CM\left(4\right)\)

TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành 

\(\Rightarrow AM=CN\)

c) Ta có : tứ giác ANMC là hinh bình hành (cmb)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của NM

và O là trung điểm của AC

mà O là trung điểm của BD

\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm

17 tháng 12 2017

Cho tứ giác ABCD là hình bình hành. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD(E,F thuộc BD)

a) Chứng minh ΔAED=ΔCFB

b) Gọi O là trung điểm AC. Chứng minh từ giác AECF là hình bình hành, từ đó suy ra O là trung điểm EF

20 tháng 7 2018

a) Do MN, NP, PQ, QM lần lượt là các đường trung bình các tam giác ABC, ACD, BDC, ABD

=> MN//BC, NP//AD, QP//BC, QM//AD  => MNPQ là hình bình hành

b) Do AB//CD => \(\widehat{AMP}=\widehat{CPM}\)

Từ câu trên => \(\widehat{QMP}=\widehat{NPM}\)

Từ 2 điều trên => \(\widehat{AMI}=\widehat{CPN}\)

Mà \(\widehat{MAI}=\widehat{PCN}\)=> T/g AMI đồng dạng t/g CPN

c) Gọi giao AD và BC là E, giao OE và CD là P', giao OE và AB là M'

Ta có AM'/P'C = OM'/OP' = M'B/DP'

AM'/DP' = EM'/  EP' = M'B/P'C

Từ 2 điều trên => DP'/P'C = P'C/DP' => P'D = P'C => P' trùng P mà AM'/M'B = DP/PC = 1

=> M' trùng M ( đây còn là bổ đề hình thang gồm ngược và đảo )

=> M,O,P thẳng hàng (đpcm)