Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
Sửa đề: Chứng minh AK=KI=IC
a: Xét tứ giác BEDF có
DE//BF
DE=BF\(\left(DE=\dfrac{1}{2}AD;BF=\dfrac{1}{2}BC;AD=BC\right)\)
Do đó: BEDF là hình bình hành
b: BEDF là hình bình hành
=>BE//DF
Xét ΔAID có
E là trung điểm của AD
EK//ID
Do đó: K là trung điểm của AI
=>AK=KI
Xét ΔBKC có
F là trung điểm của CB
FI//BK
Do đó: I là trung điểm của KC
=>KI=IC
=>AK=KI=IC
a: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
Suy ra: AE//CF
A N B F C M D E O
a) Ta có : tứ giác ABCD là hình bình hành (gt)
\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của AC (1)
và O là trung điểm của BD
\(\Rightarrow OB=OD\)
mà \(DE=BF\left(gt\right)\)
\(\Rightarrow OB-BF=OD-DE\)
\(\Rightarrow OF=OE\)
\(\Rightarrow\)O là trung điểm của EF (2)
Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành
b) Ta có : tứ giác AECF là hinh bình hành (cma)
\(\Rightarrow AE//CF\)
\(\Rightarrow AM//CN\left(3\right)\)
Ta có : tứ giác ABCD là hinh bình hành (gt)
\(\Rightarrow AB//CD\)
\(\Rightarrow AN//CM\left(4\right)\)
TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành
\(\Rightarrow AM=CN\)
c) Ta có : tứ giác ANMC là hinh bình hành (cmb)
\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của NM
và O là trung điểm của AC
mà O là trung điểm của BD
\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm
Cho tứ giác ABCD là hình bình hành. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD(E,F thuộc BD)
a) Chứng minh ΔAED=ΔCFB
b) Gọi O là trung điểm AC. Chứng minh từ giác AECF là hình bình hành, từ đó suy ra O là trung điểm EF
a) Do MN, NP, PQ, QM lần lượt là các đường trung bình các tam giác ABC, ACD, BDC, ABD
=> MN//BC, NP//AD, QP//BC, QM//AD => MNPQ là hình bình hành
b) Do AB//CD => \(\widehat{AMP}=\widehat{CPM}\)
Từ câu trên => \(\widehat{QMP}=\widehat{NPM}\)
Từ 2 điều trên => \(\widehat{AMI}=\widehat{CPN}\)
Mà \(\widehat{MAI}=\widehat{PCN}\)=> T/g AMI đồng dạng t/g CPN
c) Gọi giao AD và BC là E, giao OE và CD là P', giao OE và AB là M'
Ta có AM'/P'C = OM'/OP' = M'B/DP'
AM'/DP' = EM'/ EP' = M'B/P'C
Từ 2 điều trên => DP'/P'C = P'C/DP' => P'D = P'C => P' trùng P mà AM'/M'B = DP/PC = 1
=> M' trùng M ( đây còn là bổ đề hình thang gồm ngược và đảo )
=> M,O,P thẳng hàng (đpcm)
Sửa đề: I là trung điểm của AB, K là trung điểm của CD
ABCD là hình bình hành
=>AB//CD và BA=CD(1)
I là trung điểm của AB
=>\(AI=IB=\dfrac{AB}{2}\left(2\right)\)
K là trung điểm của CD
=>\(KC=KD=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AI=IB=KC=KD
Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
=>AK//CI
Xét ΔBAM có
I là trung điểm của BA
IN//AM
Do đó: N là trung điểm của BM
=>BN=NM(4)
Xét ΔDNC có
K là trung điểm của DC
KM//NC
Do đó: M là trung điểm của DN
=>DM=MN(5)
Từ (4) và (5) suy ra DM=MN=NB