Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc\)
\(=3\left(a^2+b^2+c^2\right)-3\left(ab+bc+ac\right)+3abc\)
Xét: \(4\left(a^2+b^2+c^2\right)-\left(a^3+b^3+c^3\right)\ge9\)(1)
<=> \(\left(a^2+b^2+c^2\right)+3\left(ab+bc+ac\right)-3abc\ge9\)
<=> \(\left(a+b+c\right)^2+\left(ab+bc+ac\right)-3abc\ge9\)
<=> \(ab+bc+ac\ge3abc\)
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)(2)
Để chứng (1) đúng ta cần chứng minh (2) đúng
Thật vậy ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
=> (2) đúng
Vậy (1) đúng
Dấu "=" xảy ra <=> a = b = c =1 .
đặt:
\(S=\frac{a^3+b^3+c^3+d^3}{a+b+c+d}=\frac{a^3}{a+b+c+d}+\frac{b^3}{a+b+c+d}+\frac{c^3}{a+b+c+d}+\frac{d^3}{a+b+c+d}\)
\(=\frac{a^4}{a^2+ab+ac+ad}+\frac{b^4}{ab+b^2+bc+bd}+\frac{c^4}{ac+bc+c^2+cd}+\frac{d^4}{ad+bd+cd+d^2}\)
áp dụng bất đẳng thức schwarts ta có:
\(S\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a^2+b^2+c^2+d^2\right)^2}{\left(a+b+c+d\right)^2}\)
áp dụng bất đẳng thức bunhicốpski ta có:
\(\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\ge\left(a+b+c+d\right)^2\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow S\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{4\left(a^2+b^2+c^2+d^2\right)}=\frac{a^2+b^2+c^2+d^2}{4}\ge\frac{4\sqrt[4]{a^2b^2c^2d^2}}{4}=\frac{4.1}{4}=1\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge a+b+c+d\)
dấu bằng xảy ra khi a=b=c=d=1
Note: Em không chắc.Rất mong được mọi người góp ý ạ,em chưa biết cách dùng sos nên đành dùng cách khác ạ.
BĐT \(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^{ 4}+b^4+c^4+ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)-ab\left(a^2+b^2\right)-bc\left(b^2+c^2\right)-ca\left(c^2+a^2\right)\ge0\) (*)
Dễ thấy BĐT trên là hệ quả của BĐT sau: \(a^4-ab\left(a^2+b^2\right)+b^4\ge0\) (1)
\(\Leftrightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)(2). Theo BĐT Cauchy-Schwarz dạng Engel,ta có:
\(VT=\frac{\left(a^2\right)^2}{1}+\frac{\left(b^2\right)^2}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\)
Ta luôn có \(\left(a-b\right)^2\ge0\forall a,b\inℝ\Rightarrow a^2+b^2\ge2ab\)
Suy ra: \(VT=a^4+b^4\ge\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)=VP\)
Do vậy BĐT (2) đúng suy ra BĐT (1) đúng (do 2 BĐT này tương đương nhau)
Tương tự với hai BĐT còn lại ta cũng có: \(b^4-bc\left(b^2+c^2\right)+c^4\ge0\);
\(c^4-ca\left(c^2+a^2\right)+a^4\ge0\). Cộng theo vế 3 BĐT trên suy ra (*) đúng hay ta có Q.E.D
\(2a^4+a+2b^4+b+2c^4+c\ge3\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)\ge3\left(a^3+b^3+c^3\right)-3\)
\(=2\left(a^3+b^3+c^3\right)+a^3+1+1+b^3+1+1+c^3+1+1-9\)
\(\ge2\left(a^3+b^3+c^3\right)+3\left(a+b+c\right)-9=2\left(a^3+b^3+c^3\right)\)
\(\Rightarrow a^4+b^4+c^4\ge a^3+b^3+c^3\)
SAI ĐỀ vì nếu thử \(a=-1;b=-2;c=3\)
thì thỏa mãn đề bài nhưng \(a^2+b^2+c^2=\left(-1\right)^2+\left(-2\right)^2+3^2=14⋮̸3\)
\(a^3+b^3-2808^{2017}=2c^3-16d^3\Rightarrow a^3+b^3+16d^3-2c^3=2808^{2017}⋮3\Rightarrow a^3+b^3+d^3+c^3+15d^3-3c^3⋮3\Leftrightarrow\left(a^3+b^3+c^3+d^3\right)+3\left(5d^3-c^3\right)⋮3\Rightarrow a^3+b^3+c^3+d^3⋮3\) \(xet:k^3-k\left(k\in Z\right)=k\left(k^2-1\right)=\left(k-1\right)k\left(k+1\right)ma:k-1;k;k+1\) là 3 sô nguyên liên tiếp
\(\Rightarrow k^3-k⋮3\)
\(\Rightarrow\left(a^3-a+b^3-b+c^3-c+d^3-d\right)⋮3\Rightarrow a+b+c+d⋮3\left(vi:a^3+b^3+c^3+d^3⋮3\right)\)
Cảm ơn bn, 1 lần nx !