K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 7 2019
bn kham khảo ở
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ
vào thống kê của mk nhé
hc tốt
31 tháng 7 2019
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
Đề nghe cứ sao sao ý (mk góp ý thui đừng ném gạch đá nha)
\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)
\(A=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)
Đặt \(t=x^2+6x\)
\(A=t\left(t+8\right)+8\)
\(A=t^2+8x+16-8\)
\(A=\left(t+4\right)^2-8\ge-8\left(\forall t\right)\)
\("="\Leftrightarrow t=-4\Leftrightarrow x^2+6x+4=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-3-\sqrt{5}\\x=-3+\sqrt{5}\end{cases}}\)