K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Ta có:

b2=a.c                                            c2=b.d

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)                              \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) (1)

\(\Rightarrow\hept{\begin{cases}\left(1\right)=\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}\\\left(1\right)=\frac{a+b-c}{b+c-d}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\end{cases}}\)

\(\Rightarrow\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)

Vậy \(\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)

Ta có: \(b^2=a\cdot c\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)

         \(c^2=b\cdot d\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}\)(3)

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)

\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)(4)

Từ (3) và (4) \(\Rightarrow\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)(đpcm)

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Do $a, b, c$ không có vai trò như nhau nên không thể giả sử \(a>b> c\) hoặc bất cứ TH nào khác mà chỉ có thể xét các TH.

Từ \(2a^a+b^b=3c^c\Leftrightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}=3\) (*)

+) Nếu \(a=b=c\) thì hiển nhiên (*) đúng

\(2015^{a-b}+2016^{b-c}+2017^{c-a}=2015^0+2016^0+2017^0=3\)

+) Nếu tồn tại hai số bằng nhau thì hiển nhiên số còn lại cũng bằng 2 số đó. Giống như TH trên ta thu được giá trị biểu thức bằng 3

+) Nếu $a,b,c$ đôi một khác nhau

\(c=\min (a,b,c)\Rightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}>2+1=3\) (trái với (*))

\(c=\max (a,b,c)\Rightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}< 2+1=3\) (trái với (*))

Do đó $c$ nằm giữa $a$ và $b$

Giả sử \(a> c> b\)

\(\Rightarrow a\geq c+1\)

\(\Rightarrow 3=\frac{2a^a}{c^c}+\frac{b^b}{c^c}>\frac{2(c+1)^{c+1}}{c^c}\)

Ta có: \(2(c+1)^{c+1}>2(c+1).c^c\geq 2(1+1)c^c> 4c^c\)

\(\Rightarrow 3> \frac{2(c+1)^{c+1}}{c^c}> 4\) (mâu thuẫn)

Giả sử \(b> c> a\Rightarrow b\geq c+1\Rightarrow 3=\frac{2a^a}{c^c}+\frac{b^b}{c^c}> \frac{(c+1)^{c+1}}{c^c}\)

\(c=1\Rightarrow 3> \frac{(1+1)^{1+1}}{1^1}=4\) (vô lý)

\(c\geq 2\Rightarrow (c+1)^{c+1}=(c+1)(c+1)^c\geq 3(c+1)^c> 3c^c\)

\(\Rightarrow 3> \frac{(c+1)^{c+1}}{c^c}> 3\) (mâu thuẫn)

-------------------

Vậy \(a=b=c\) và giá trị biểu thức bằng 3

19 tháng 12 2017

Thánh lm cx chưa nổi !!

Ribi Nkok Ngok

Nguyễn Thanh Hằng

Akai Haruma

Nguyễn Huy Tú

Nguyễn Nam

lê thị hương giang

Võ Đông Anh Tuấn