Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
a/ Bình phương 2 vế:
\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ Bình phương:
\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)
\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Câu trả lời hay nhất: Bài này áp dụng BĐT Cauchy (Cô-si) cho 2 số.
Ta có: a^2/b + b >= 2.căn[(a^2/b).b] = 2.căn(a^2) = 2|a| >= 2a
Tương tự, b^2/c + c >= 2|b| >= 2b
................c^2/a + a >= 2|c| >= 2c
Cộng vế với vế, ta được:
a^2/b + b^2/c + c^2/a + a + b + c >= 2a + 2b + 2c
<=> a^2/b + b^2/c + c^2/a >= a + b + c (điều phải chứng minh)
k cho mk nha
Với a,b,c > 0 ta có :
\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+\left(b+c\right)}{2}}=\frac{2a}{a+b+c}\)( Áp dụng \(\sqrt{xy}\le\frac{x+y}{2}\) )
Tương tự ta cũng có :
\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng 3 bất đẳng thức trên vế với vế , ta được :
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu " = " xay ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\), vô nghiệm vì a,b,c >0
Do đó : \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\left(1\right)\)
Lại có :
\(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng lại ta được :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ (1) và (2 ) \(\Rightarrowđpcm\)
Chúc bạn học tốt !!
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+b+c)(1+b+c)\geq (a+b+c)^2\Rightarrow \sqrt{a^2+b+c}\geq \frac{a+b+c}{\sqrt{1+b+c}}\)
\(\Rightarrow \frac{a}{\sqrt{a^2+b+c}}=\frac{a\sqrt{1+b+c}}{a+b+c}\)
Hoàn toàn tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\leq \frac{a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}}{a+b+c}\)
Tiếp tục sd BĐT Bunhiacopxky:
\((a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b})^2\leq (a+b+c)(a+ab+ac+b+ba+bc+c+ca+cb)\)
\(a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}\leq \sqrt{(a+b+c)(a+b+c+2ab+2bc+2ac)}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
\((a+b+c)^2\leq 3(a^2+b^2+c^2)=9\Rightarrow a+b+c\leq 3\Rightarrow a+b+c\leq a^2+b^2+c^2\)
Do đó:
\(a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}\leq \sqrt{(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac)}\)
\(=\sqrt{(a+b+c)^3}\)
\(\Rightarrow \text{VT}\leq \frac{\sqrt{(a+b+c)^3}}{a+b+c}=\sqrt{a+b+c}\leq \sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Thôi làm luôn tìm ko ra thì chỉ phí time
Ta cm bổ đề
\(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\Leftrightarrow\sqrt{\frac{b+c+d}{a}}\le\frac{a+b+c+d}{2a}\)
\(=\frac{\frac{b+c+d}{a}+1}{2}\ge\sqrt{\frac{b+c+d}{a}}\) (đúng)
Tương tự cho 3 BĐT còn lại rồi cộng theo vế
\(VT\ge\frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2=VP\)
bài này vừa làm hôm qua xong chả nhớ ở web nào cả
nhưng c/m \(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\) bằng AM-GM nhé đợi t tìm link cho đỡ phải làm lại