
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Có \(\frac{a}{b} = \frac{c}{d} = \frac{a}{c} = \frac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{c} = \frac{b}{d} = \frac{a + b}{c + d}\)
\(= \left(\left(\right. \frac{a}{c} \left.\right)\right)^{2} = \left(\left(\right. \frac{b}{d} \left.\right)\right)^{2} = \left(\left(\right. \frac{a + b}{c + d} \left.\right)\right)^{2}\)
\(= \frac{a^{2}}{c^{2}} = \frac{b^{2}}{d^{2}} = \left(\left(\right. \frac{a + b}{c + d} \left.\right)\right)^{2}\)
Có \(\frac{a^{2}}{c^{2}} = \frac{b^{2}}{d^{2}}\)
Theo dãy tính chất tỉ số bằng nhau ta có :
\(\frac{a^{2}}{c^{2}} = \frac{b^{2}}{d^{2}} = \frac{a^{2} + b^{2}}{c^{2} + d^{2}}\)
Từ (1) và (2) = \(\left(\left(\right. \frac{a + b}{c + d} \left.\right)\right)^{2} = \frac{a^{2} + b^{2}}{c^{2} + d^{2}}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=>a=bk; c=dk
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Do đó: \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=\left(c^2+d^2\right)ab\)
\(\Leftrightarrow a^2cd-c^2ab-d^2ab+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\begin{cases}ac=bd\\ad=bc\end{cases}\)
\(\Leftrightarrow\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Suy ra:
+ \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{kb^2}{kd^2}=\dfrac{b^2}{d^2}\)
+ \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)
=> đpcm

a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Rightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\).
\(\frac{a}{b}\) = \(\frac{c}{d}\)
\(\frac{a}{c}\) = \(\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}\) = \(\frac{b}{d}\) = \(\frac{a+b}{c+d}\)
(\(\frac{a}{c}\))\(^2\) = (\(\frac{b}{d}\))\(^2\) = (\(\frac{a+b}{c+d}\))\(^2\)
\(\frac{a^2}{c^2}\) = \(\frac{b^2}{d^2}\) = \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2+b^2}{c^2+d^2}\) = (\(\frac{a+b}{c+d}\))\(^2\) (đpcm)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=>a=bk; c=dk
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Do đó: \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)