Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Áp dụng tính chất giao hoán của của tỉ lệ thức, ta có:
2a-b/2a+b=2c-d/2c+d = 2c+d/2a+b=2c-d/2a-b => 2(c+d)+2(c-d)/2(a+b)+2(a-b) = 2(c+d+c-d)/2(a+b+a-b) = c+d+c-d/a+b+a-b = c+c-d-d/a+a-b-b = 2c/2a = c/a (1)
2a-b/2a+b=2c-d/2c+d = 2c+d/2a+b=2c-d/2a-b = 2(c+d-c-d)/2(a+b-a-b) = c+d-c-d/a+b-a-b = d+d-c+c/b+b-a+a = 2d/2b = d/b (2)
Từ (1) và (2) suy ra: 2a-b/2a+b=2c-d/2c+d = c/a=d/b => c/d=a/b =>a/b=c/d
chúc bn học tốt :)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a+b}{2a-b}=\dfrac{2bk+b}{2bk-b}=\dfrac{2k+1}{2k-1}\)
\(\dfrac{2c+d}{2c-d}=\dfrac{2dk+d}{2dk-d}=\dfrac{2k+1}{2k-1}\)
=>\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
b: \(\dfrac{2a+b}{a-2b}=\dfrac{2bk+b}{bk-2b}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{2k+1}{k-2}\)
=>\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
mình giải câu 1 còn câu 2 từ từ mình suy nghĩ nhé bạn
Cho a/b=c/d suy ra ad=bc
ta có ad+ac=bc+ac
suy ra a/(a+b)=c/(c+d) nếu ko hiểu thì nhắn tin cho mình bước này nhé
=>đpcm
cho a/b=c/d
chứng minh :
2a/a+b=2c/c+a
a-b/2a+b=c-d/2c-d
a/a^2+b^2=c/c^2+d^2
a+b/a^2-b^2=c+d/c^2-d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a}{a+b}=\dfrac{2bk}{bk+b}=\dfrac{2k}{k+1}\)
\(\dfrac{2c}{c+d}=\dfrac{2dk}{dk+d}=\dfrac{2k}{k+1}\)
Do đó: \(\dfrac{2a}{a+b}=\dfrac{2c}{c+d}\)
b: \(\dfrac{a-b}{2a+b}=\dfrac{bk-b}{2bk+b}=\dfrac{k-1}{2k+1}\)
\(\dfrac{c-d}{2c+d}=\dfrac{dk-d}{2dk+d}=\dfrac{k-1}{2k+1}\)
Do đó: \(\dfrac{a-b}{2a+b}=\dfrac{c-d}{2c+d}\)
c: \(\dfrac{a}{c}=\dfrac{bk}{dk}=\dfrac{b}{d}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a}{c}=\dfrac{a^2+b^2}{c^2+d^2}\)
hay \(\dfrac{a}{a^2+b^2}=\dfrac{c}{c^2+d^2}\)
Ta có : a/b =c/d
Tương đương :a/c =b/d
Tương đương:2a/2c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{2a}{2c}\)=\(\frac{b}{d}\)=\(\frac{2a-b}{2c-d}\)=\(\frac{2a+b}{2c+d}\)
Hay \(\frac{2a-b}{2a+b}\)=\(\frac{2c-d}{2c+d}\)