K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

ta có: \(a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\)vì (a-b)^2>=0 => \(a^2+ab+b^2\ge\frac{3}{4}\left(a+b\right)^2\Leftrightarrow\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}}{2}\left(a+b\right)\)

gọi là A đi. tương tự thì \(A\ge\frac{\sqrt{3}}{2}\left(a+b+b+c+a+c\right)=\frac{\sqrt{3}}{2}.2.1\left(a+b+c=1\right)=\sqrt{3}\Rightarrow MinA=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\)

24 tháng 1 2018

nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé

23 tháng 1 2018

Nhỏ nhất hay lớn nhất

2 tháng 10 2021

\(a,A=x-4\sqrt{x+9}=\left(x+9-4\sqrt{x+9}+4\right)-13\\ A=\left(\sqrt{x+9}-2\right)^2-13\ge-13\\ A_{min}=-13\Leftrightarrow x+9=4\Leftrightarrow x=-5\\ b,B=x-3\sqrt{x-10}=\left(x-10-3\sqrt{x-10}+\dfrac{9}{4}\right)+\dfrac{31}{4}\\ B=\left(\sqrt{x-10}+\dfrac{9}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\\ B_{min}=\dfrac{31}{4}\Leftrightarrow x-10=\dfrac{81}{16}\Leftrightarrow x=\dfrac{241}{16}\\ c,C=x-\sqrt{x+1}=\left(x+1-\sqrt{x+1}+\dfrac{1}{4}\right)-\dfrac{5}{4}\\ C=\left(\sqrt{x+1}-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ C_{min}=-\dfrac{5}{4}\Leftrightarrow x+1=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{3}{4}\)

\(d,D=x+\sqrt{x+2}=\left(x+2+\sqrt{x+2}+\dfrac{1}{4}\right)-\dfrac{9}{4}\\ D=\left(\sqrt{x+2}+\dfrac{1}{4}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\\ D_{min}=-\dfrac{9}{4}\Leftrightarrow\sqrt{x+2}=-\dfrac{1}{4}\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

a: \(A=x-4\sqrt{x}+9\)

\(=\left(\sqrt{x}-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x=4

b: \(B=x-3\sqrt{x}-10\)

\(=x-2\cdot\sqrt{x}\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{49}{4}\)

\(=\left(\sqrt{x}-\dfrac{3}{2}\right)^2-\dfrac{49}{4}\ge-\dfrac{49}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{4}\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

18 tháng 7 2017

sai đề rùi    nó chẳng liên quan j tới nhau cả