Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b\right)^2=a^2+2ab+b^2=1\)
Mặt khác: \(\left(a^2-2ab+b^2\right)\ge0\)
Cộng 2 vế của 2 phương trình trên ta có:
\(2a^2+2b^2\ge1\Rightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Dấu bằng xảy ra khi và chỉ khi a=b=1/2
\(M\ge3\left(ab+bc+ca\right)+2\sqrt{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}=3\left(ab+bc+ca\right)+2\sqrt{1-2\left(ab+bc+ca\right)}\)
\(\text{Đặt }t=\sqrt{1-2\left(ab+bc+ca\right)}\Rightarrow ab+bc+ca=\frac{1-t^2}{2}\)
\(\text{Ta có: }0\le ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)
\(\Rightarrow ab+bc+ca\in\left[0;\frac{1}{3}\right]\)
\(\Rightarrow-2\left(ab+bc+ca\right)\in\left[-\frac{2}{3};0\right]\)
\(\Rightarrow1-2\left(ab+bc+ca\right)\in\left[\frac{1}{3};1\right]\)
\(\Rightarrow t\in\left[\frac{1}{\sqrt{3}};1\right]\)
\(M=3.\frac{1-t^2}{2}+2t=-\frac{3}{2}t^2+2t+\frac{3}{2}\)
Lập bảng biến thiên hàm bậc 2, suy ra \(\text{Min }M\text{ (}t\in\left[\frac{1}{\sqrt{3}};1\right]\text{) }=2\text{ tại }t=1\)
Vậy GTNN của M là 2 khi t = 1 hay \(ab+bc+ca=0\Leftrightarrow\left(a;b;c\right)=\left(1;0;0\right);\left(0;0;1\right);\left(0;1;0\right)\)
(Đề có cho \(a,b,c\) dương không bạn? Nếu có thì ta làm như sau:)
Dự đoán \(P\) đạt GTNN tại \(a=b=c=\frac{1}{\sqrt{3}}\), nghĩa là \(\frac{1}{abc}=3\sqrt{3}\).
Vậy ta tách: \(P=9a+9b+9c+\frac{1}{abc}-8\left(a+b+c\right)\)
Áp dụng BĐT Cauchy và BĐT \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) ta có:
\(P\ge4.\sqrt[4]{9^3}-8\sqrt{3}=4\sqrt{3}\). Đẳng thức xảy ra tại \(a=b=c=\frac{1}{\sqrt{3}}\)