Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài chỉ cho a+b+c=0 và yêu cầu cm ab + 2bc + 3ac < hoặc = 0
I:
a: \(=x^2-2x+1+x^2-4x+4\)
\(=2x^2-6x+5\)
\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu = xảy ra khi x=3/2
b: \(=-4\left(x^2-2x+\dfrac{3}{4}\right)\)
\(=-4\left(x^2-2x+1-\dfrac{1}{4}\right)=-4\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
Ta có:
\(\left(3a-2b+c\right)^2=9a^2+4b^2+c^2+2\left(3ac-6ab-2bc\right)\)
\(\Rightarrow b^2=9a^2+4b^2+c^2\)
(vì \(3a-3b+c=0\Leftrightarrow3a-2b+c=-b\), \(6ab+2bc-3ac=0\))
\(\Leftrightarrow9a^2+3b^2+c^2=0\)
\(\Leftrightarrow a=b=c=0\).
Khi đó: \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)
Ta có:
(3a−2b+c)2=9a2+4b2+c2+2(3ac−6ab−2bc)
⇒b2=9a2+4b2+c2
(vì 3a−3b+c=0⇔3a−2b+c=−b, 6ab+2bc−3ac=0)
⇔9a2+3b2+c2=0
⇔a=b=c=0.
Khi đó: P=(−1)2019+(−1)2020+(−1)2021=−1
\(2T=\frac{a^2-2ac+c^2+c^2-2bc+b^2+a^2-2ab+b^2}{\left(a-c\right)\left(a+c\right)-2b\left(a-c\right)}\)
\(2T=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-c\right)\left(a-b+c-b\right)}\)
Theo đề bài ta có:\(\hept{\begin{cases}a-b=4\\b-c=2\end{cases}\Rightarrow}a-c=6\)
\(\Rightarrow2T=\frac{4^2+2^2+6^2}{6\cdot\left(4-2\right)}=\frac{14}{3}\)
vì trị tuyệt đối của a>trị tuyệt đối của b-c
suy ra a^2>(b-c)^2 rồi bạn tự giải tiếp
Lời giải:
ĐK: $x\neq 2019$
PT $\Rightarrow A(x-2019)^2=2019x$
$\Leftrightarrow Ax^2-x(4038A+2019)+A.2019^2=0(*)$
Vì biểu thức $A$ xác định nên PT $(*)$ có nghiệm.
$\Rightarrow \Delta=(4038A+2019)^2-4A^2.2019^2\geq 0$
$\Leftrightarrow 2019^2(2A+1)^2-4A^2.2019^2\geq 0$
$\Leftrightarrow (2A+1)^2-(2A)^2\geq 0$
$\Leftrightarrow 4A+1\geq 0$
$\Leftrightarrow A\geq -\frac{1}{4}$
Vậy GTNN của $A$ là $\frac{-1}{4}$. $A$ không có GTLN