\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)>4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

a = 0 ; b = 1 ; c = 3

1 tháng 3 2017

BỔ SUNG: Cho số dương a,b,c

Giải 

Ta có: \(a+b\le4\left(c>0\right)\) \(\Rightarrow\sqrt{a+b}\ge\frac{a+b}{2}\)

Tương tự cũng có: \(\sqrt{b+c}\ge\frac{b+c}{2};\sqrt{c+a}\ge\frac{c+a}{2}\)

Cộng theo vế ta dc: \(VT\ge a+b+c=4\)

23 tháng 1 2017

a) 54 * ( - 37 - 46 ) - 46 * ( 37 - 54 ) = - 54 * 37 - 54 * 46 - 46 * 37 + 46 * 54

= ( 46 * 56 - 54 * 46 ) - ( 54 * 37 + 46 * 37 ) = 0 - 37 * ( 54 + 46 ) = 0 - 37 * 100 = - 3700

23 tháng 1 2017

mình cũng = -3700

2 tháng 7 2018

2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)

Dấu "=" xảy ra <=> a = b = c

14 tháng 12 2017

ta có:\(a,b,c\ge0;a+b+c=4\)

\(\Rightarrow a+b\le4\)\(mà\)\(a,b\ge0\)\(\Rightarrow0\le a+b\le4\left(1\right)\)

\(\Rightarrow\sqrt{a+b}\le2\)

\(\Rightarrow2-\sqrt{a+b}\ge0\)\(\left(2\right)\)

Từ (1) và(2)\(\Rightarrow\sqrt{a+b}\left(2-\sqrt{a+b}\right)\ge0\)

\(\Rightarrow2\sqrt{a+b}\ge a+b\)

CMTT:\(2\sqrt{b+c}\ge b+c;2\sqrt{c+a}\ge c+a\)

\(\Rightarrow2\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\ge2\left(a+b+c\right)\)

Mà a+b+c=4\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge4\)

Dấu "="xảy ra khi \(\left(a;b;c\right)=\left(4;0;0\right);\left(0;4;0\right);\left(0;0;4\right)\)

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

24 tháng 5 2017

Ta co:

\(\sqrt[4]{4}VT=\sqrt[4]{4}\sqrt[4]{a^3}+\sqrt[4]{4}\sqrt[4]{b^3}+\sqrt[4]{4}\sqrt[4]{c^3}\)

\(=\sqrt[4]{4a^3}+\sqrt[4]{4b^3}+\sqrt[4]{4c^3}\)

\(=\sqrt[4]{\left(a+b+c\right)a^3}+\sqrt[4]{\left(a+b+c\right)b^3}+\sqrt[4]{\left(a+b+c\right)c^3}\)

\(>\sqrt[4]{a^4}+\sqrt[4]{b^4}+\sqrt[4]{c^4}=a+b+c\)

\(\Rightarrow VT>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)

24 tháng 5 2017

từ dòng 3 xuống dòng 4 khó hiểu quá ạ

1 tháng 1 2019

BĐT Cô-si đê ông

1 tháng 1 2019

\(2.\sqrt{a}+3.\sqrt[3]{b}+4.\sqrt[4]{c}\)

\(=\sqrt{a}+\sqrt{a}+\sqrt[3]{b}+\sqrt[3]{b}+\sqrt[3]{b}+\sqrt[4]{c}+\sqrt[4]{c}+\sqrt[4]{c}+\sqrt[4]{c}\)

Áp dụng BĐT AM-GM ta có:

\(2.\sqrt{a}+3.\sqrt[3]{b}+4.\sqrt[4]{c}\ge9\sqrt[9]{\sqrt{a}.\sqrt{a}.\sqrt[3]{b}.\sqrt[3]{b}.\sqrt[3]{b}.\sqrt[4]{c}.\sqrt[4]{c}.\sqrt[4]{c}.\sqrt[4]{c}}=9.\sqrt[9]{abc}\)

                                                                                                                                           đpcm