K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

\(\left\{\begin{matrix} a+b+c=2016\\ \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{504}\end{matrix}\right.\)

\(\Rightarrow (a+b+c)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2016.\frac{1}{504}=4\)

\(\Leftrightarrow \frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}=4\)

\(\Leftrightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=4\)

\(\Leftrightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+1+1+1=4\)

\(\Leftrightarrow S+3=4\Leftrightarrow S=1\)

12 tháng 4 2018

cảm ơn bạn nhé

27 tháng 4 2016

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(\Rightarrow S=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{c+a}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)

\(\Rightarrow S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2016.\frac{1}{90}-3=\frac{97}{5}\)

Vậy....................

8 tháng 11 2015

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2015.\frac{1}{90}-3=19\frac{7}{18}\)

17 tháng 1 2016

lay ong di qua lay ba di lai cho xin may tick

1 tháng 4 2019

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{7}\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{1}{7}\left(a+b+c\right)\) (nhân a + b +c vào mỗi vế)

\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2009}{7}\)

Suy ra \(S=\frac{2009}{7}-3=284\)