K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Hỏi đáp Toán

7 tháng 12 2017

§1. Hàm số

7 tháng 3 2021

c1:áp dụng bđt AM-GM:

\(a+b\ge2\sqrt{ab}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2=1008^2\)

=> đáp án A

c2: tương tự c1 . đáp án b

NV
8 tháng 3 2021

3.

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)

Đáp án A

4.

\(a^2-a+1=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall a\)

Đáp án A

14 tháng 7 2019

tham khảo thui nhé, chưa tìm đc lời giải phù hợp :'< 

+) Với 3 số a,b,c đều lớn nhất ( a=b=c ) 

\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a=H\) (1) 

+) Không mất tính tổng quát, với a và b là số lớn nhất ( a=b>c ) 

\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{2}{a}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (2) 

+) Không mất tính tổng quát, với a là số lớn nhất ( a>b, a>c ) 

\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (3) 

(1), (2) và (3) \(\Rightarrow\)\(a\ge H\) với a là số lớn nhất hoặc 1 trong các số lớn nhất ( tương tự với b và c ) 

27 tháng 7 2019

Trả lời

1.Hình như đề sai

Phải là cho C là tập hợp các số tự nhiên bé hơn 500 và là bội của 3.Hỏi C có bao nhiêu phần tử.

Z mới đúng chứ đề như trên thì tìm hàng tỉ phần tử á vì là số nguyên.

C={0;3;6;9;...;498}

Số phần tử của C là:

    (498-0):3+1=167(phần tử)

Vậy tập hợp C có 167 phần tử.

Tl

Bạn T i k 3 lần cho mình mình trả lời cho

#Kirito

23 tháng 11 2019

Ta co:

\(\text{ }P=\Sigma_{cyc}\frac{ab}{2016-c}=\Sigma_{cyc}\frac{ab}{a+b}\le\Sigma_{cyc}\frac{\frac{\left(a+b\right)^2}{4}}{a+b}=\Sigma_{cyc}\frac{a+b}{4}=1008\)

Dau '=' xay ra khi \(a=b=c=672\)