K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(S=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+b}\)

\(3+S=1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}\)

\(3+S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(3+S=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(3+S=\frac{2001.1}{10}=\frac{2001}{10}\Rightarrow S=\frac{2001}{10}-3\)

NV
12 tháng 4 2019

\(S=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)

\(S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)

\(S=\frac{2001}{b+c}+\frac{2001}{c+a}+\frac{2001}{a+b}-3\)

\(S=2001\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

\(S=2001.\frac{1}{10}-3=\frac{1971}{10}\)

13 tháng 4 2019

1/(a+b) + 1/(b+c) + 1/(c+a)=1/10

<=>(a+b+c)(1/a+b + 1/b+c + 1/c+a)=(a+b+c).1/10

<=>2001.(1/a+b + 1/b+c + 1/c+a)=200,1

<=>2001/a+b + 2001/b+c + 2001/c+a =200,1

<=>a+b+c/a+b + a+b+c/b+c + a+b+c/c+a=200,1

<=>a+b/a+b + c/a+b + b+c/b+c + a/b+c + c+a/c+a + b/c+a

<=>3+ c/a+b + a/b+c + b/c+a=200,1

<=>c/a+b + a/b+c + b/c+a=198,1

17 tháng 5 2017

Sửa đề:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2001.\dfrac{1}{10}-3\)

\(=200,1-3=197,1\)

Vậy S = 197,1

17 tháng 5 2017

kcj

25 tháng 2 2020

Em có cách khác!

\(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)

\(\Rightarrow\frac{a+b+c+d}{a+b+c}+\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}\)

\(+\frac{a+b+c+d}{d+a+b}=50\)

\(\Rightarrow\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1\)

\(+\frac{c}{d+a+b}+1=50\)

\(\Rightarrow\frac{d}{a+b+c}+\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}=46\)

17 tháng 1 2020

Đề: \(a+b+c+d=2000\)

\(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)

Tính:

 \(S=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)

Giải:

Có: \(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)

=> \(\frac{1}{2000-d}+\frac{1}{2000-a}+\frac{1}{2000-b}+\frac{1}{2000-c}=\frac{1}{40}\)

<=> \(\frac{2000}{2000-d}+\frac{2000}{2000-a}+\frac{2000}{2000-b}+\frac{2000}{2000-c}=\frac{2000}{40}\)

<=> \(1+\frac{d}{2000-d}+1+\frac{a}{2000-a}+1+\frac{b}{2000-b}+1+\frac{c}{2000-c}=50\)

<=> \(\frac{d}{a+b+c}+\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}=46\)

=> \(S=46\)

Bài 2: 

a: \(\dfrac{-1}{5}< 0< \dfrac{1}{1000}\)

b: \(\dfrac{267}{268}< 1< \dfrac{1347}{1343}\)

nên \(-\dfrac{267}{268}>-\dfrac{1347}{1343}\)

d: \(\dfrac{-181818}{313131}=\dfrac{-181818:10101}{313131:10101}=\dfrac{-18}{31}\)

 

4 tháng 7 2021

Ta có S = \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)

=> S + 4 = \(\left(\frac{a}{b+c+d}+1\right)+\left(\frac{b}{c+d+a}+1\right)+\left(\frac{c}{d+a+b}+1\right)+\left(\frac{d}{a+b+c}+1\right)\)

\(\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}+\frac{a+b+c+d}{d+a+b}+\frac{a+b+c+d}{a+b+c}\)

\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}+\frac{1}{a+b+c}\right)\)

\(=4000.\frac{1}{40}=100\)

=> S = 100 - 4 = 96