K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

\(\hept{\begin{cases}a+b+c=2\\a^2+b^2+c^2=18\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\\a^2+b^2+c^2=18\end{cases}}\Rightarrow ab+bc+ca=-7\)

Ta có: \(a+b+c=2\Leftrightarrow c-1=1-a-b\Rightarrow ab+c-1=ab-a-b+1=\left(a-1\right)\left(b-1\right)\Rightarrow\frac{1}{ab+c-1}=\frac{1}{\left(a-1\right)\left(b-1\right)}\)Tương tự, ta được: \(\frac{1}{bc+a-1}=\frac{1}{\left(b-1\right)\left(c-1\right)}\)\(\frac{1}{ca+b-1}=\frac{1}{\left(c-1\right)\left(a-1\right)}\)

Do đó \(A=\frac{1}{\left(a-1\right)\left(b-1\right)}+\frac{1}{\left(b-1\right)\left(c-1\right)}+\frac{1}{\left(c-1\right)\left(a-1\right)}=\frac{a+b+c-3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=\frac{-1}{abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1}=\frac{-1}{-1+7+2-1}=-\frac{1}{7}\)

29 tháng 1 2019

Thay ab+bc+ca=1 vào vế trái rồi ghép lại được vế phải

29 tháng 1 2019

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)                                                                                         \(=\left(a\left(a+b\right)+c\left(a+b\right)\right)....\)

Tướng tự bạn tự phân tích là ra kết quả

3 tháng 6 2020

Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)

\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)

\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)

\(\ge\text{​​}\Sigma\text{​​}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)

\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=2+ab+bc+ca\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

5 tháng 3 2020

Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bbcc.

Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a

Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1

Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)

⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)

Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.

6 tháng 3 2020

.....................?

29 tháng 3 2018

Mình viết trên điện thoại có gì sai thông cảm Ta có ab+bc+ac=1

Thì \({\sqrt{1-a^2}}\) 

=\({\sqrt{ab+bc+ac+a^2}}\) 

\({\sqrt{(b+a)(a+c)}}\) \(≤{b+2a+c\over2}\)  

Thì a/ căn của (1-a^2) ≥ 2a/(b+2a+c)

Tương tự với cách trên thì

b/  căn của (1-b^2)≥ 2b/(a+2b+c)

Và c/ căn của (1-c^2)≥2c/(a+b+2c)

Bạn cộng ba cái đó lại đặt là (1) rồi làm tiếp

Ta có bài toán phụ

\( {1\over {a+b}}≤ {{a+b}\over4ab}\) 

\(= {1\over4}({1\over a}+{1\over b})\) 

Tách 2a;2b;2c ở từng mẫu rồi áp dụng công thức trên ta đc

(1) \(≤{2a{.1 \over 4}({1\over b+a}+{1\over a+c}})\) +2b (viết tương tự như cái này vì mình viết điện thoại hiư lâu bạn viết tiếp nhá viết tới cái 2c nhân với 1/4 và cái tổng rồi) + 

\( {2a\over b+a}+{2a\over a+c}+{2b\over b+a}+{2b\over b+c}+{2c\over a+c}+{2c\over b+c}\) 

= 1/4×{[(2a+2b)/(a+b)]+[(2a+2c)/(a+c)]+[(2b+2c)/b+c]}

=1/4 ×(2+2+2)

= 3/2

Vậy Max của S =3/4 khi a=b=c=1/4

Chúc bạn học tốt

29 tháng 3 2018

Bạn dợi mình học đi thêm về rùi chụp lên cho