Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^4c^3+b^4a^3+c^4b^3}{a^3b^3c^3}\)= \(\frac{b^4c+c^4a+a^4b}{abc}\)
\(\Rightarrow\)\(a^4c^3+b^4a^3+c^4b^3\)= \(b^4c+c^4a+a^4b\)
\(\Rightarrow\)\(a^4\left(c^3-b\right)+b^4\left(a^3-c\right)+c^4\left(b^3-a\right)\)= 0
suy ra c^3 -b = 0 hoặc a^3 -c = 0 hoặc b^3 -a = 0
suy ra đpcm
đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{c}\end{cases}}\)khi đó xyz=1
đề bài <=> x+y+z =1/x +1/y +1/z => x+y+z =yz+xz+xy
từ đó => xyz+ (x+y+z) -(xy+yz+xz)-1=0 <=> (x-1)(y-1)(z-1)=0
vây tồn tại x=1 =>a=b^3 (đpcm")
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Ta gọi 3 số lần lượt là a , b , c
Theo đề bài ta có :
\(\left\{\begin{matrix}\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\\a^2+b^2+c^2=24309\end{matrix}\right.\)
Ta có \(\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\)
\(\Leftrightarrow\frac{a^2}{\left(\frac{2}{5}\right)^2}=\frac{b^2}{\left(\frac{3}{4}\right)^2}=\frac{c^2}{\left(\frac{1}{6}\right)^2}\)
\(\Leftrightarrow\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}=\frac{a^2+b^2+c^2}{\frac{2701}{3600}}=\frac{24309}{\frac{2701}{3600}}=32400\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{\frac{2}{5}}=32400\\\frac{b}{\frac{3}{4}}=32400\\\frac{c}{\frac{1}{6}}=32400\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}a=32400.\frac{2}{5}=12960\\b=32400.\frac{3}{4}=24300\\c=32400.\frac{1}{6}=5400\end{matrix}\right.\)
\(\Rightarrow A=12960+24300+5400=42660\)
Vậy số A = 42660
Ta có : a/c=c/b
=> c^2=a.b (1)
Cm:a/b=a^2+c^2/b^2+c^2 (2)
Từ (1),(2) suy ra :
a^2+c^2/b^2+c^2=a^2+a.b/b^2+a.b=a(a+b)/b(b+a)=a/b
Vậy a/b = a^2+c^2/b^2+c^2 (đpcm)
Đề \(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)\(\left(ĐKXĐ:a,b,c\ne0\right)\)\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac\right)+\left(abc+bc^2+ac^2-abc\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\a+c=0\end{cases}\RightarrowĐpcm}\)
a) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow ac+bc=2ab=ac-ab=ab-bc=a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
b) \(\text{Để n nguyên thì P phải nguyên} \)
\(\Rightarrow\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\Rightarrow\frac{1}{n-1}\in Z\)
=> n-1 là ước của 1
=> n-1={-1;1)
=> n={0;2)
c) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\)\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
b)\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
P là số nguyên \(\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)
\(\Leftrightarrow n-1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{0;2\right\}\)
c)\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow12x-8y=0,6z-12x=0,8y-6z=0\)
\(\Rightarrow12x=8y,6z=12x,8y=6z\)
\(\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)
Vậy M = 6
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!