Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)
\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017.\frac{1}{10}\)
\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)
Mà \(2017=a+b+c\) nên :
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\)
\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{b}{a+c}\right)=201,7\)
\(3+\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=201,7\)
\(\Leftrightarrow M=\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=201,7-3\)
\(\Leftrightarrow M=198,7\)
Vậy ...
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
a) Bình phương 2 vế ta đc:
\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ac+bd\right)\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)(bình phương 2 vế)
\(\Leftrightarrow\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)(luôn đúng) => đpcm
b) Đề sai bạn nhé, thay bừa đáp án x=2 ra 15 ko chia hết 6
c)Bài này thấy sai sai nhưng để t xem lại đã
Có \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)(BĐT Bunhiacopxki)
\(=\left(1+1+1\right)^2=9\)
Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>1\)
Vậy bài toán ko giải đc; Nếu mk làm sai thì thứ lỗi vì mk năm nay mới lên lớp 8