Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{caab+cab+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=1\)
cho a,b,c>0 thỏa mãn a+b+c=1
tìm GTLN của P=\(\frac{ab}{c+1}\)+\(\frac{bc}{a+1}\)+\(\frac{ac}{b+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\frac{1}{4}\left[\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)
\(=\frac{1}{4}\left[\frac{a\left(b+c\right)}{b+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c\left(a+b\right)}{a+b}\right]\)
\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\cdot1=\frac{1}{4}\left(a+b+c=1\right)\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Nguyễnthij hương giang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link này nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{b}{bc+b+1}+\frac{a}{ab+a+1}+\frac{c}{ac+c+1}\)
\(=\frac{ac.b}{ac\left(bc+b+1\right)}+\frac{c.a}{c\left(ab+a+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{1}{c+1+ac}+\frac{ac}{1+ac+c}+\frac{c}{ac+c+1}=1\)
a= b+c=a : b=a+c; c= a=b voi nhung bai nhan chia cung vay
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)abc=\frac{3}{4}8\Rightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=\frac{3.8}{4}\Leftrightarrow\)\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{ab+a+1}=\frac{ac}{abc+ac+c}=\frac{ac}{1+ac+c}\)
\(\frac{b}{bc+b+1}=\frac{abc}{acbc+acb+ac}=\frac{1}{c+1+ac}\)
\(\Leftrightarrow\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+1+c}=1\)
p/s: cộng lại chỉ = 1 thui >: có sai đề ko vại ?????????
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+1}\)
Vì abc=1
\(=>M=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{ac+c+abc}=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{c\left(a+ab+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=\frac{ab+a+1}{ab+a+1}=1\)
Vậy M=1
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{ab+a+1}{ab+a+1}=1\)
\(P=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\)
\(=\frac{1}{ab+a+1}+\frac{abc}{bc+babc+abc}+\frac{abc}{ac+c+abc}\)
\(=\frac{1}{ab+a+1}+\frac{abc}{bc\left(1+ab+a\right)}+\frac{abc}{c\left(a+1+ab\right)}\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}\)
\(=\frac{ab+a+1}{ab+a+1}=1\)