Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Theo bất đẳng thức Cô - si, ta có: \(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\le\frac{a+b+a+c}{2}+\frac{b+c}{2}=1\)
\(\Rightarrow\sqrt{a}\left(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\right)\le\sqrt{a}\)hay \(\sqrt{a^2+abc}+\sqrt{abc}\le\sqrt{a}\)
Tương tự ta có: \(\sqrt{b^2+abc}+\sqrt{abc}\le\sqrt{b}\);\(\sqrt{c^2+abc}+\sqrt{abc}\le\sqrt{c}\)
Mà \(abc\le\left(\frac{a+b+c}{3}\right)^3=\frac{1}{27}\Rightarrow\sqrt{abc}\le\frac{1}{3\sqrt{3}}\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le3\left(a+b+c\right)=3\)\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
\(a,b,c\ge0\Rightarrow abc\ge0\Rightarrow\sqrt{a^2+abc}\ge\sqrt{a^2}=a\)
Tương tự:\(\sqrt{b^2+abc}\ge b,\sqrt{c^2+abc}\ge c\)
\(\Rightarrow A\ge a+b+c+0=1\)
Đẳng thức xảy ra \(\Leftrightarrow abc=0,a+b+c=1\)(bạn tự giải tiếp)
Đặt \(x=a;y=\frac{b}{2};z=\frac{c}{3}\left(x,y,z>0\right)\) và\(x+y+z=xyz\)
Khi đó ta có: \(B=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{xyz}{x^2\left(x+y+z\right)+xyz}}\le\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\le\frac{y}{2\left(x+y\right)}+\frac{z}{2\left(x+z\right)}\)
Tương tự có: \(\frac{1}{\sqrt{1+y^2}}\le\frac{x}{2\left(x+y\right)}+\frac{z}{2\left(y+z\right)};\frac{1}{\sqrt{1+z^2}}\le\frac{x}{2\left(x+z\right)}+\frac{y}{2\left(y+z\right)}\)
\(\Rightarrow B\le\frac{x+y}{2\left(x+y\right)}+\frac{x+z}{2\left(x+z\right)}+\frac{y+z}{2\left(y+z\right)}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\Rightarrow\hept{\begin{cases}a=\sqrt{3}\\b=2\sqrt{3}\\c=3\sqrt{3}\end{cases}}\)
*Sửa đề: tìm GTNN
\(A=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
\(=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\ge\frac{\frac{2+c-2}{2}}{\sqrt{2}c}=\frac{\frac{c}{2}}{\sqrt{2}c}=\frac{1}{2\sqrt{2}}\)
TƯơng tự cho 2 BĐT còn lại ta cũng có:
\(\frac{\sqrt{a-3}}{a}\ge\frac{1}{2\sqrt{3}};\frac{\sqrt{b-4}}{b}\ge\frac{1}{2\sqrt{4}}\)
Suy ra \(A\ge\frac{1}{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}\right)\)
Ta có : \(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ac\sqrt{b-4}}{abc}=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)
Áp dụng bất đẳng thức Cauchy, ta có :
\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\le\frac{2+c-2}{2\sqrt{2}c}=\frac{1}{2\sqrt{2}}\)
\(\frac{\sqrt{a-3}}{a}=\frac{\sqrt{3\left(a-3\right)}}{\sqrt{3}a}\le\frac{3+a-3}{2\sqrt{3}a}=\frac{1}{2\sqrt{3}}\)
\(\frac{\sqrt{b-4}}{b}=\frac{\sqrt{4\left(b-4\right)}}{2b}\le\frac{4+b-4}{4b}=\frac{1}{4}\)
\(\Rightarrow\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\le\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}c-2=2\\b-4=4\\a-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}c=4\\b=8\\a=6\end{cases}}\)
Vậy giá trị lớn nhất của biểu thức là \(\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\Leftrightarrow\hept{\begin{cases}a=6\\b=8\\c=4\end{cases}}\)
phá ra nha
sau đó bạn lm theo tek này
\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\le\frac{\frac{c}{2}}{\sqrt{2}c}=\frac{1}{\sqrt{2}}\)
mấy cái kia tt nha
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}=a\sqrt{\frac{1}{a+b}.\frac{1}{c+a}}\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}\)
Tương tự 2 cái còn lại cộng lại ta đc \(VT\le\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Cach khac
Dat \(P=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Ta co:
\(a+b+c=abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(\Rightarrow xy+yz+zx=1\)
\(\Rightarrow P=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)
Ta lai co:
\(\sqrt{\frac{yz}{1+x^2}}=\sqrt{\frac{yz}{xy+yz+zx+x^2}}=\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)
Tuong tu:
\(\sqrt{\frac{zx}{1+y^2}}\le\frac{1}{2}\left(\frac{z}{y+z}+\frac{x}{x+y}\right)\)
\(\sqrt{\frac{xy}{1+z^2}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
\(\Rightarrow a=b=c=\sqrt{3}\)
Vay \(P_{min}=\frac{3}{2}\)khi \(a=b=c=\sqrt{3}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
\(3\sqrt[3]{abc}\le a+b+c\Rightarrow abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{1}{27}\) (BĐT AM-GM)
\(\sqrt{a^2+abc}=\sqrt{a\left(a+bc\right)}=\frac{2}{3}\sqrt{\frac{9}{4}a\left(a+bc\right)}\le\frac{2}{3}\left(\frac{\frac{9}{4}a+a+bc}{2}\right)\) (BĐT AM-GM)
Tương tự: \(\Rightarrow\)\(A\le\frac{1}{3}\left(\frac{9}{4}\left(a+b+c\right)+a+b+c+ab+bc+ca\right)+9\sqrt{\frac{1}{27}}\)
mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
=>giải được
moi hok lop @ minh . com