Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta áp dụng cô-si la ra
a^2+b^2+c^2 ≥ ab+ac+bc
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1)
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2)
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3)
cộng (1) (2) (3) theo vế:
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc)
=> a^2 + b^2 + c^2 ≥ ab+ac+bc
dấu = khi : a = b = c
Trước tiên chứng minh:
\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
(nhân vô rút gọn chuyển hết sang trái được)
\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-6abc\ge0\)
\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(b^2a-2abc+c^2a\right)\ge0\)
\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2+\left(a\sqrt{c}-b\sqrt{c}\right)^2+\left(b\sqrt{a}-c\sqrt{a}\right)^2\ge0\)(đúng)
Từ đây ta có:
\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow ab+bc+ca\le\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\left(a+b+c\right)}=\frac{9}{4\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)}\)
\(\le\frac{9}{4.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{4.3}=\frac{3}{4}\)
Vậy \(ab+bc+ca\le\frac{3}{4}\)
A) a2+b2+c2+ab+bc+ca>=0 (*)
<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0
<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0
<=> (a+b)2+(b+c)2+(c+a)2>=0
BĐT cuối luôn đúng với mọi a,b,c
Vậy BĐT (*) đc cm
Phần B cũng tương tự nhé
a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2
Mà \(\left(a+b+c\right)^2\ge0\forall x\)
Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)
b) hình như sai đề rồi bạn à !
Lời giải:
Áp dụng BĐT Cauchy:
\(\frac{a^3}{bc}+b+c\geq 3\sqrt[3]{a^3}=3a\)
\(\frac{b^3}{ca}+c+a\geq 3\sqrt[3]{b^3}=3b\)
\(\frac{c^3}{ab}+a+b\geq 3\sqrt[3]{c^3}=3c\)
Cộng theo vế thu được:
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}+2(a+b+c)\geq 3(a+b+c)\)
\(\Rightarrow \frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\geq a+b+c\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
Đặt: \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(2A=\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)
\(3-2A=1-\frac{2bc}{a^2+2bc}+1-\frac{2ac}{b^2+2ac}+1-\frac{2ab}{c^2+2ab}\)
\(3-2A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)
\("="\Leftrightarrow a=b=c\)
Đặt \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(2A=\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)
\(3-2A=1-\frac{2bc}{a^2+2bc}+1-\frac{2ac}{b^2+2ac}+1-\frac{2ab}{c^2+2ab}\)
\(3-2A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)
Dấu = xảy ra \(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)
Đề chính xác hơn là \(ab+bc+ca\le\dfrac{1}{3}\)