\(a+b+c=1\)

\(a^2+b^2+c^2=1\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Câu hỏi của Rarah Venislan - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của Nguyễn Lê Nhật Linh - Toán lớp 9 - Học toán với OnlineMath

6 tháng 4 2017

1 bai thoi cung dc

8 tháng 7 2018

a) Đặt \(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3^4-1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(...\)

\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2A=3^{64}-1\)

\(A=\frac{3^{64}-1}{2}\)

3 tháng 7 2018

b+1+2c chứ ko phải b+1=2c nhé

3 tháng 7 2018

A=1

lợi dụng a+b+c=1 thay vào từng mẫu

8 tháng 9 2018

a ) \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Do \(a^2\ge0;b^2\ge0;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )

Thay * vào biểu thức M , ta được :

\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)

\(=-1^{1999}+0+1^{2001}\)

\(=-1+0+1\)

\(=0\)

Vậy \(M=0\)

8 tháng 9 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)

\(\Leftrightarrow bc+ac+ab-1=0\)

\(\Leftrightarrow bc+ac+ab=1\)

\(a^2+b^2+c^2=1\)

\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)

\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)

\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

\(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)

\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)

\(\Rightarrow P=1+1+1=3\)

Vậy \(P=3\)

25 tháng 9 2016

tất cả các số bé kia là mũ nha các bạn(số 2,3 ấy)

26 tháng 9 2016

1. biến đổi vế trái 

= a2x2 + a2y2 + b2x2 + b2y2 

= (ax -by)2 + (bx+ ay)2 - 2abxy + 2abxy 

= (ax -by)2 + ( bx + ay)2 = vế phải( dpcm)

22 tháng 10 2016

Câu 1:

  • Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

  • Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

22 tháng 10 2016

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

10 tháng 12 2017

Do a\(\ge\)-1

=>2a+3\(\ge\)0

=>(a-3)2(2a+3)\(\ge0\)

=> (a2-6a+9)(2a+3)\(\ge0\)

=>2a3+3a2-12a2-18a+18a+27\(\ge0\)

=> 2a3-9a2+27\(\ge0\)

=>2a3\(\ge\)9a2-27

TT=>2b3\(\ge9b^2-27\)

         2c3\(\ge9c^2-27\)

=>2M\(\ge\)9(a2+b2+c2)-81=9.9-81=0

=>\(M\ge0\)

12 tháng 12 2017

ta có:\(a\ge-1\Rightarrow a+1\ge0\)

\(\left(a-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(a+1\right)\left(a-2\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(a+1\right)\left(a^2-4a+4\right)\)\(\ge0\)

\(\Leftrightarrow a^3-4a^2+4a+a^2-4a+4\ge0\)

\(\Leftrightarrow a^3+4-3a^2\ge0\)

\(\Leftrightarrow a^3+4\ge3a^2\)

tương tự:\(b^3+4\ge3b^2;c^3+4\ge3c^2\)

\(\Rightarrow a^3+b^3+c^3+12\ge3\left(a^2+b^2+c^2\right)\)

\(a^2+b^2+c^2=9\)

\(\Rightarrow a^3+b^3+c^3\ge27-12=15\)

Dấu "=" xayr ra khi:

\(\left(a;b;c\right)=\left(-1;2;2\right);\left(2;2;-1\right);\left(2;-1;2\right)\)

30 tháng 10 2019

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

30 tháng 10 2019

Câu b) tương tự nha