Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia \(abc\) hai về được BĐT tương đương \(\frac{1}{ab}+\frac{1}{ac}\ge16\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) được: \(\frac{1}{ab}+\frac{1}{ac}\ge\frac{4}{ab+ac}=\frac{4}{a\left(b+c\right)}\)
Dưới mẫu bạn áp dụng BĐT \(a\left(b+c\right)\le\frac{\left(a+b+c\right)^2}{4}=\frac{1}{4}\) thì \(\frac{1}{ab}+\frac{1}{ac}\ge16\).
BĐT được chứng minh.
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Vì \(a,b,c>0\)\(\Rightarrow\frac{a}{b};\frac{b}{c};\frac{c}{a}>0\)nên áp dụng bđt Cauchy cho 3 số dương ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3.\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3.\sqrt[3]{1}=3\left(đpcm\right)\)
Vậy với \(a,b,c>0\)thì \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Sửa đề: Cho \(a,b,c>0\) và \(abc=1\). Chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)
Cách 1: Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2c+b^2a+c^2b}{abc}\ge\frac{\frac{\left(ab+bc+ca\right)^2}{a+b+c}}{abc}\ge a+b+c\)
Cách 2: Áp dụng BĐT AM-GM ta có:
\(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}\ge3a\)
Tương tự ta cũng có \(\frac{2b}{c}+\frac{c}{a}\ge3b;\frac{2c}{a}+\frac{a}{b}\ge3c\)
Cộng theo vế và rút gọn ta có ĐPCM
Cách 3: Đặt \(x=\sqrt[9]{\frac{ab^4}{c^2}};y=\sqrt[9]{\frac{ca^4}{b^2}};z=\sqrt[9]{\frac{bc^4}{a^2}}\)
\(\Rightarrow a=xy^2;b=xz^2;c=yz^2\forall xyz\le1\)
Áp dụng BĐT Rearrangement ta có:
\(Σ\frac{a}{b}=Σ\frac{x^2}{yz}\ge xyzΣ\frac{x^2}{yz}=Σx^3\geΣxy^2=Σa\)
Ta có \(b+c=\left(b+c\right).\left(a+b+c\right)^2\) (vì a+b+c=0)
Mà \(\left(a+b+c\right)^2=\left[\left(b+c\right)+a\right]^2\ge4\left(b+c\right).a\)
Do đó \(\left(b+c\right).\left(a+b+c\right)^2\ge4\left(b+c\right)^2.a\ge4.4bc.a=16abc\)vì (b+c)^2>=4bc
dấu = xảy ra thì tự tìm nha bạn
Câu hỏi của Đỗ Minh Quang - Toán lớp 9 - Học toán với OnlineMath
Em xem cách làm ở link này nhé!
Áp dụng bất đẳng thức coosi ta được:
\(a+b+c\ge2\sqrt{a\left(b+c\right)}\Rightarrow1\ge4a\left(b+c\right)\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\Rightarrow b+c\ge16abc\)
Dấu "=" xảy ra khi \(a=b+c\) và \(b=c\) và \(a+b+c=1\Rightarrow a=\frac{1}{2};b=c=\frac{1}{4}\)