\(\frac{1}{a\left(b+1\right)}\)+\(\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath

25 tháng 4 2017

tớ chỉ bày cách giải thôi

cm (a-1)(b-1)(c-1)>0

vì a.b.c=1 => (1.0)+1=1

từ đó sẽ suy ra là (a-1)(b-1)(c-1)>0

16 tháng 10 2020

Xí trước phần b

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2b+ca^2}+\frac{ca}{b^2c+ab^2}+\frac{ab}{c^2a+bc^2}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2bc^2}+\frac{c^2a^2}{ab^2c^2+a^2b^2c}+\frac{a^2b^2}{a^2bc^2+ab^2c^2}\)

\(=\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{bc+ab}+\frac{\left(ab\right)^2}{ca+bc}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

16 tháng 10 2020

Cách làm khác của phần b ngắn gọn hơn:)

Ta có; \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

\(=\frac{\left(\frac{1}{a}\right)^2}{ab+ca}+\frac{\left(\frac{1}{b}\right)^2}{bc+ab}+\frac{\left(\frac{1}{c}\right)^2}{ca+bc}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

10 tháng 5 2017

phân tích lần lượt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1\)(tự nhân ra hộ mình nhé)

\(=\left(a+b+c\right)-\left(ab+bc+ca\right)\)(vì abc=1)

Theo đề bài ta có: \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=ab+bc+ca\)(vì abc=1)

\(\Rightarrow\left(a+b+c\right)-\left(ab+bc+ca\right)>0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

22 tháng 8 2020

Từ giả thiết \(ab+bc+ca=2abc\)suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)thì \(\hept{\begin{cases}x+y+z=2\\x,y,z>0\end{cases}}\)và  bất đẳng thức cần chứng minh trở thành \(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)hay \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{1}{2}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta được \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y+z\right)^2+y\left(z+x\right)^2+z\left(x+y\right)^2}\)\(=\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\)

Ta cần chứng minh\(\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\ge\frac{1}{2}\)\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\ge x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz\)

Thật vậy, theo một đánh giá quen thuộc ta có \(2\left(x^2+y^2+z^2\right)^2=2\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)\)\(\ge\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\)

Mà ta lại có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y\)

Suy ra ta có \(\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\ge\frac{4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)}{3}\)

Ta cần chỉ ra được \(4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)\)\(\ge3\left(x^2y+y^2x+x^2z+z^2x+y^2z+yz^2+6xyz\right)\)

Hay\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)

Áp dụng bất đẳng thức Cauchy ta được \(4\left(x^3+y^3+z^3\right)\ge12xyz\)\(x^2y+y^2z+z^2x\ge3xyz\)\(xy^2+yz^2+zx^2\ge3xyz\)

Cộng theo vế các bất đẳng thức trên ta được\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)

Vậy bất đẳng thức được chứng minh

 Đẳng thức xảy ra khi \(a=b=c=\frac{3}{2}\)