Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
cho a,b,c>0 và a+b+c=3
CMR: \(\dfrac{a}{b^3+ab}+\dfrac{b}{c^3+bc}+\dfrac{c}{a^3+ca}\ge\dfrac{3}{2}\)
Lời giải:
a)
Sử dụng pp biến đổi tương đương:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)
\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)
Ta có đpcm.
b) Áp dụng công thức của phần a ta có:
\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)
Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)
Do đó:
\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)
Cộng theo vế các BĐT trên thu được:
\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)
\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)
\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)
\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)
ok thỏa thuận rồi tui làm nửa sau thui nhé :D
Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:
\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)
Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)
Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:
\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)
\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
Vì \(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)
\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)
Can you continue
Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Ta có:
\(VT=\)\(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)
\(=\dfrac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}+\dfrac{1+1+a^2}{\left(b^2+c^2+1\right)\left(1+1+a^2\right)}+\dfrac{1+1+b^2}{\left(c^2+a^2+1\right)\left(1+1+b^2\right)}\)
Áp dụng BĐT Bunhiacopski cho mẫu số, ta có:
\(\left(a^2+b^2+c^2\right)\left(1+1+c^2\right)\ge\left(a+b+c\right)^2\)
\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(b+c+a\right)^2\)
\(\left(c^2+a^2+1\right)\left(1+1+b^2\right)\ge\left(c+a+b\right)^2\)
\(\Rightarrow VT\le\dfrac{1+1+c^2}{\left(a+b+c\right)^2}+\dfrac{1+1+a^2}{\left(b+c+a\right)^2}+\dfrac{1+1+b^2}{\left(c+a+b\right)^2}=\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\le\dfrac{6+ab+bc+ca}{3\left(ab+bc+ca\right)}=\dfrac{6+3}{3.3}=1\)
\("="\Leftrightarrow a=b=c=1\)
Lời giải:
Ta có:
\(\text{VT}=a-\frac{ab(a+b)}{a^2+ab+b^2}+b-\frac{bc(b+c)}{b^2+bc+c^2}+c-\frac{ca(c+a)}{c^2+ca+a^2}\)
\(=a+b+c-\left(\frac{ab(a+b)}{a^2+ab+b^2}+\frac{bc(b+c)}{b^2+bc+c^2}+\frac{ca(c+a)}{c^2+ca+a^2}\right)\)
Áp dụng BĐT AM-GM:
\(\text{VT}\geq a+b+c-\left(\frac{ab(a+b)}{2ab+ab}+\frac{bc(b+c)}{2bc+bc}+\frac{ca(c+a)}{2ac+ac}\right)\)
\(\Leftrightarrow \text{VT}\geq a+b+c-\frac{2}{3}(a+b+c)=\frac{a+b+c}{3}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
Áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+ab+b^2}\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}\)
Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}\\\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\end{matrix}\right.\)
Cộng vế theo vế của bất đẳng thức:
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Tiếp tục áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
Cmtt\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\\\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\end{matrix}\right.\)
Cộng vế theo vế
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\\ \ge\dfrac{2}{3}\left(a-\dfrac{b}{2}+b-\dfrac{c}{2}+c-\dfrac{a}{2}\right)=\dfrac{2}{3}\left(a+b+c-\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{3}\)
\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự và cộng lại ta sẽ có đpcm