Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)
\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2
=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc
Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)
1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0
=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow a^2+b^2+c^2=-2ab-2bc-2ac\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left(-2ab-2bc-2ac\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)+2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)\) (do \(a+b+c=0\))
\(\Leftrightarrow\frac{a^4+b^4+c^4}{2}=\frac{2a^2b^2+2b^2c^2+2a^2c^2}{2}\)
\(\Leftrightarrow\frac{a^4+b^4+c^4}{2}+\frac{a^4+b^4+c^4}{2}=\frac{2a^2b^2+2b^2c^2+2a^2c^2}{2}+\frac{a^4+b^4+c^4}{2}\)
\(\Leftrightarrow a^4+b^4+c^4=\frac{a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2}{2}\)
\(\Rightarrow a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)(đpcm)