Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
a)Ta có: a3 + b3 + c3 = 3abc
=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)
=>Có 2 trường hợp
a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0
Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c
=>để (a-b)2 + (b-c)2 + (c-a)2 = 0
=>a=b=c
Thay trường hợp a=b=c vào P
=> (2017 +1)(2017+1)(2017+1)=20183
b)Tương tự a+b+c=0
=> a3 + b3 + c3 = 3abc
=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)
\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
\(A=\frac{3abc}{abc}=3\) Do (a3 +b3 + c3=3abc thay vào)
+) a2+b2+c2\(\ge\)3
Đặt a-1 =x , b-1 =y,c-1=z
\(\Rightarrow\)x,y,z \(\in\)[-1;1] và x+y+z=0
pttt: (x+1)2+(y+1)2+(z+1)2\(\ge\)3
\(\Leftrightarrow\)....\(\Leftrightarrow\)x2+y2+z2+2(x+y+z)+3\(\ge\)3
\(\Leftrightarrow\)x2+y2+z2+3\(\ge\)3
\(\Leftrightarrow\)x2+y2+z2\(\ge\)0 (luôn đúng với mọi x,y,z)
+)a2+b2+c2\(\le\)5
Ta có a,b,c\(\in\)[0;2]\(\Rightarrow\)2-a\(\ge\)0 , 2-b\(\ge\)0 , 2-c\(\ge\)0
\(\Leftrightarrow\)(2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)2ab+2ac+2bc\(\ge\)4(a+b+c)+abc-8
\(\Leftrightarrow\)2(ab+bc+ac)\(\ge\)12 + abc -8=4+abc (vì a+b+c=3)
Mà 4+abc\(\ge\)4 (vì a,b,c\(\in\)[0;2])
\(\Leftrightarrow\)2(ab+bc+ac)\(\ge\)4
\(\Leftrightarrow\)(a+b+c)2\(\ge\)4 +a2+b2+c2
mà a+b+c=3
\(\Leftrightarrow\)a2+b2+c2\(\le\)33-4=5
Dấu '=' xảy ra khi (a,b,c)=(0,1,2)và hoán vị vòng quanh
Vậy bdt được cm
Ta có:
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^3=0\)
\(\Rightarrow a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6abc=0\)
\(\Rightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ac\right)=3abc\)
Vì a + b + c = 0
\(\Rightarrow a^3+b^3+c^3=3abc\)
Do \(3abc⋮3abc\)
\(\Rightarrow a^3+b^3+c^3⋮3abc\)