\(a^3+b^3+c^3=3abc\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Ta có: a+b+c = 0

=> a+b = -c

a^3+b^3 +c^3 = (a+b)^3 - 3a^2.b - 3ab^2 +c^3

= (-c)^3 - 3ab(a+b) +c^3

= (-c)^3 +c^3 - 3ab.(-c) = -3ab(-c) = 3abc (đpcm)

22 tháng 9 2017

Ta có : a + b + c = 0

\(\Rightarrow\)a + b = - c

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\\ \Rightarrow a^3+3a^2b+3ab^2+b^3=-c^3\\ \Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\\ \Rightarrow a^3+b^3+c^3=-3ab.\left(-c\right)\\ \Rightarrow a^3+b^3+c^3=3ab\left(đpcm\right)\)

14 tháng 12 2017

ta có:a+b=(-c)

(a+b)^3=(-c)^3

a^2+3a^2b+3ab^2+b^3=(-c)^3

a^3+b^3+c^3= -3a^2b+3ab^2

a^3+b^3+c^3= -3ab(a+b)

a^3+b^3+c^3= -3ab(-c)

a^3+b^3+c^3=3abc

11 tháng 7 2018

C1: Ta có: \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)        (1)

Ta có: \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^3=0^3\)

\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\) (2)

Thay (1) vào (2) ta có:

\(a^3+b^3+c^3+3.\left(-a\right).\left(-b\right).\left(-c\right)=0\)

\(a^3+b^3+c^3-3abc=0\)

\(a^3+b^3+c^3=3abc\)

                        đpcm

C2: \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(a^3+3a^2+3ab^2+b^2=-c^3\)

\(a^3+b^3+c^3+3ab\left(a+b\right)=0\)

Ta có: \(a+b=-c\)

\(\Rightarrow\)\(a^3+b^3+c^3+3ab\left(-c\right)=0\)

\(a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

                                   đpcm

11 tháng 7 2018

Ta có:\(a+b+c=0\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+3ab\left(a+b\right)+b^3=-c^3\)

\(\Leftrightarrow a^3-3abc+b^3=-c^3\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

11 tháng 7 2018

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow\left(a+b\right)^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3ab.\left(-c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)

31 tháng 3 2020

\(a+b+c=0\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3=0\) (thay \(a+b=-c\))

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\) (đpcm)

NV
20 tháng 10 2019

a/

\(a^2+b^2+c^2+29ab+bc+ca=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)

b/ \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)

c/ Không, vì \(a=b=c\ne\) thì \(a^3+b^3+c^3=3a^3=3abc\) vẫn đúng

20 tháng 10 2019

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

20 tháng 10 2019

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

28 tháng 10 2018

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

28 tháng 10 2018

làm đúng mà ko hiểu

Câu a : Ta có : \(x^3+x^2z+y^2z-xyz+y^3=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow x+y+z=0\) ( đpcm )

Câu b : \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Câu c : Ta có : \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a+b+c=0\) ( đúng )

19 tháng 8 2015

Gt<=>(a+b+c)^3=0

<=>(a+b)^3+c+3+3(a+b)c(a+b+c)=0

<=>a^3+b^3+c^3+3ab(a+b)=0 (vì a+b+c=0)

<=>a^3+b^3+c^3=3abc (vì a+b=-c)

4 tháng 9 2016

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c