\(a+b+c,abc=1\).CMR

\(\dfrac{bc}{a^2\left(b+c\r...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow xyz=1\)

\(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
11 tháng 10 2018

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

11 tháng 10 2018

mk viết nhầm

\(ab+bc+ca=1\)

bn giúp mk với

31 tháng 8 2017

BT2: Nhân 2 lên, chuyển vế, biến đổi bla..... sẽ ra đpcm

1 tháng 10 2017

Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)

Dự đoán điểm rơi sẽ có 1 số bằng 0.

Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)

do đó \(ab+bc+ca\ge ab\)\(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)

BDT cần chứng minh tương đương

\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)

BĐT trên hiển nhiên đúng theo AM-GM.

Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )

1 tháng 10 2017

a,b,c không âm

1 tháng 12 2017

1) Áp dụng BĐT Cô si

ta có

\(\left(\sqrt{a+b}-\dfrac{1}{2}\right)^2\ge0\forall a,b\inĐK\)

\(\Leftrightarrow a+b-2\sqrt{a+b}.\dfrac{1}{2}+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)

vậy ĐPCM

19 tháng 5 2018

Bài 2

Áp dụng bđt Cauchy ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có:

\(\Rightarrow VP\le4\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng bđt Cauchy ta có \(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b+\dfrac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\dfrac{1}{2}\right)^2\ge2.2\sqrt{ab}.\dfrac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có:

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow VT\ge VP\)

\(\Rightarrowđpcm\)

26 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2+b^2}{ab\left(a+b\right)^3}\ge\dfrac{2ab}{ab\left(a+b\right)^3}=\dfrac{2}{\left(a+b\right)^3}\\\dfrac{b^2+c^2}{bc\left(b+c\right)^3}\ge\dfrac{2bc}{bc\left(b+c\right)^3}=\dfrac{2}{\left(b+c\right)^3}\\\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{2ca}{ca\left(c+a\right)^3}=\dfrac{2}{\left(c+a\right)^3}\end{matrix}\right.\)

\(\Rightarrow VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)

Chứng minh rằng \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{9}{8}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{{}\begin{matrix}2ab\le a^2+b^2\\2bc\le b^2+c^2\\2ca\le c^2+a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab\le a^2-ab+b^2\\bc\le b^2-bc+c^2\\ca\le c^2-ca+a^2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}ab\left(a+b\right)\le\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\\bc\left(b+c\right)\le\left(b+c\right)\left(b^2-bc+c^2\right)=b^3+c^3\\ca\left(c+a\right)\le\left(c+a\right)\left(c^2-ca+a^2\right)=c^3+a^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3ab\left(a+b\right)\le3\left(a^3+b^3\right)\\3bc\left(b+c\right)\le3\left(b^3+c^3\right)\\3ca\left(c+a\right)\le3\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+3ab\left(a+b\right)+b^3\le4\left(a^3+b^3\right)\\b^3+3bc\left(b+c\right)+c^3\le4\left(b^3+c^3\right)\\c^3+3ca\left(c+a\right)+a^3\le4\left(c^3+a^3\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^3\le4\left(a^3+b^3\right)\\\left(b+c\right)^3\le4\left(b^3+c^3\right)\\\left(c+a\right)^3\le4\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\left(a+b\right)^3}\ge\dfrac{1}{4\left(a^3+b^3\right)}\\\dfrac{1}{\left(b+c\right)^3}\ge\dfrac{1}{4\left(b^3+c^3\right)}\\\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4\left(c^3+a^3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\)

Chứng minh rằng \(\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}=\dfrac{9}{2}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\) ( đpcm )

Vậy \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)

\(VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)

\(\Rightarrow VT\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{ab\left(a+b\right)^3}+\dfrac{b^2+c^2}{bc\left(b+c\right)^3}+\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{9}{4}\) ( đpcm )

26 tháng 3 2017

đề thiếu số dương à ? hay đủ