Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Một kiểu biến đổi tương đương khác.
\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\). Giả sử \(c=min\left\{a,b,c\right\}\)
\(VT-VP=\frac{\left(7a^2+8ab-ac+7b^2-bc-2c^2\right)\left(a-b\right)^2+\left(a^2+ac+b^2+bc+2c^2\right)\left(a+b-2c\right)^2}{4}\ge0\)
Ta có qed./.
P/s: Bài giải trong 3 dòng:D
Làm sao để biến đổi được như mình? Không hề khó! Ta có:
\(f\left(a;b;c\right)=f_1\left(a-c\right)\left(b-c\right)+f_2\left(a-b\right)^2\) (1)
\(=f_1\left(a-c\right)\left(b-c\right)+f_2\left(a+b-2c+2\left(c-b\right)\right)^2\)
\(=f_1\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2+4f_2\left(a+b-2c\right)\left(c-b\right)+4f_2\left(c-b\right)^2\)
\(=f_1\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2+4f_2\left(c-b\right)\left(a+b-2c+c-b\right)\)
\(=-\left(4f_2-f_1\right)\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2\) (2)
Từ (1) và (2) suy ra \(f\left(a;b;c\right)=\frac{f_2\left(4f_2-f_1\right)\left(a-b\right)^2+f_2.f_1.\left(a+b-2c\right)^2}{4f_2-f_1+f_1}\)
\(=\frac{\left(4f_2-f_1\right)\left(a-b\right)^2+f_1\left(a+b-2c\right)^2}{4}\) (3)
Như vậy, ta chỉ cần tìm được cách phân tích (1) thì sẽ tìm được cách phân tích (3).
Trở lại bài trên: \(VT-VP=2\left(a^4+b^4+c^4\right)-a^3\left(b+c\right)-b^3\left(c+a\right)-c^3\left(a+b\right)\)
\(=\left(a^2+ac+b^2+bc+2c^2\right)\left(a-c\right)\left(b-c\right)+2\left(a^2+ab+b^2\right)\left(a-b\right)^2\)
Từ đó dẫn đến cách phân tích bên trên.
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1