K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Bài 1 undefined

11 tháng 6 2019

Bài 1 :

undefined

29 tháng 4 2017

Áp dụng bđt Cauchy - Schwarz dưới dạng Engel ta có :

\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{3}=\frac{\left(\frac{9}{3}\right)^2}{3}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

27 tháng 4 2018

bunhia:

\(\left(1+1+1\right)\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3}\)

Ta cm bđt sau:\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\)(tự khai triển luôn đúng)

\(\Rightarrow a^2+b^2+c^2\ge12\Rightarrow\dfrac{\left(a^2+b^2+c^2\right)^2}{3}\ge\dfrac{12^2}{3}=48\)

\(\Rightarrow a^4+b^4+c^4\ge48\)

Dấu ''='' xảy ra khi a=b=c=2

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

11 tháng 6 2015

mình đc 4a à

(a+b+c)(1/a+1/b+1/c)=1+a/b+a/c+b/a+1+b/c+c/a+c/b+1=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)

mà a/b+b/a>=2(BĐT cosi)

cmtt ta đc

3+2+2+2>=9

Vậy(a+b+c)(1/a+1/b+1/c)>=9

2 tháng 3 2018

Nhân P với 4. Do 4=a+b+c+d+e

Áp dụng \(\left(x+y\right)^2\ge4xy\)

2 tháng 3 2018

Nhân 16, xin lỗi mình nhầm

NV
18 tháng 8 2020

Bạn tham khảo:

Câu hỏi của Nobody - Toán lớp 8 | Học trực tuyến

18 tháng 8 2020

nghi ngờ bạn học cùng lớp dậy thêm

NV
17 tháng 8 2020

3 câu đầu đều sử dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

\(N=\frac{1^2}{a}+\frac{2^2}{b+1}+\frac{3^2}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

\(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Câu d sử dụng BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

\(Q\ge\frac{1}{3}\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2+2020\)

\(Q\ge\frac{1}{3}\left(\frac{1}{3}\left(a+b+c\right)^2\right)^2+\frac{1}{3}\left(a+b+c\right)^2+2020=2026\)

Dấu "=" xảy ra khi \(a=b=c=1\)