Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này không khó :v
Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Face khác ;v, theo AM-GM, ta có
\(\dfrac{a+b+c}{2}\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{6}{2}=3\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=2
Ta có :
\(\frac{a^2}{a+b}=\frac{a^2+ab-ab}{a+b}=a-\frac{ab}{a+b}\le a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)
Tương tự \(\hept{\begin{cases}\frac{b^2}{b+c}\le b-\frac{\sqrt{bc}}{2}\\\frac{c^2}{a+c}\le c-\frac{\sqrt{ac}}{2}\end{cases}}\)(2)
Nhhan (1);(2) lại ta được
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge a+b+c-\frac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2}=a+b+c-3\)
Ta lại có : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{bc}=6\) (tự cm)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge6-3=3\)(đpcm)
Bài tập về nha khi hok thêm trên thầy Diện đây mà:))
\(H=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\Rightarrow H^2=\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)^2\)
Áp dụng BĐT phụ \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Khi đó:\(H^2\ge3\left(a^2+b^2+c^2\right)=9\)
P/S:E ko chắc đâu nha:((
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(a+b+c+ab+ac+bc=6abc\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Hay \(x+y+z+xy+yz+xz=6\)
Cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge3\)
Ta có : \(\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)\ge2\left(x+y+z\right)\) (BĐT Cosi)
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\) (BĐT Cosi)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Lời giải:
Từ $abc=1$ suy ra tồn tại $x,y,z>0$ sao cho \((a,b,c)=\left(\frac{x}{y},\frac{y}{z},\frac{z}{x}\right)\)
Bài toán chuyển về CMR:
\(A=\sqrt{\frac{yz}{xy+xz+2yz}}+\sqrt{\frac{xz}{xy+yz+2xz}}+\sqrt{\frac{xy}{2xy+yz+xz}}\leq \frac{3}{4}\)
Áp dụng BĐT AM-GM: \(\sqrt{\frac{yz}{xy+xz+2yz}}\leq \frac{yz}{xy+xz+2yz}+\frac{1}{4}\)
Thiết lập tương tự... \(\Rightarrow A\leq \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}+\frac{3}{4}\) $(1)$
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{xy}\geq \frac{16}{2xy+yz+xz}\Rightarrow \frac{9xy}{xy+yz+xz}+1\geq \frac{16xy}{2xy+yz+xz}\)
Thiết lập tương tự với các phân thức còn lại và công theo vế:
\(\Rightarrow \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}\leq \frac{12}{16}=\frac{3}{4}\) $(2)$
Từ \((1),(2)\Rightarrow A\leq \frac{3}{2} (\text{đpcm})\).
Dấu $=$ xảy ra khi $x=y=z$ hay $a=b=c=1$
đề bài
cm
1/a+2 + 1/b+2 +1/c+2 <=1
bn p viết đề chứ???
##thiêndi###
\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)
\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)
\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)
\(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)
\(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)
\(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)
\(2.\) \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\ge\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\) \(1\ge8abc\)
\(\Leftrightarrow\) \(abc\ge\frac{1}{8}\left(đpcm\right).\)