\(a+b+c=0,a^2+b^2+c^2=1\)

chứng minh rằng \(a^4+b^4+c^4=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ đề bài ta có :

\(a+b+c=0< =>\left(a+b+c\right)^2=0< =>a^2+b^2+c^2+2ab+2ac+2bc=0\)

Mà \(a^2+b^2+c^2=1\)  < = > 1 + 2 ( ab + ac + bc ) = 0

< = > 2 ( ab + ac + bc ) = -1 

< = > ab + ac + bc = -1/2

\(< =>\left(ab+ac+bc\right)^2=\left(-\dfrac{1}{2}\right)^2< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)

\(< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(< =>\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2=\dfrac{1}{4}\)

Lại có từ \(a^2+b^2+c^2=1\)

\(< =>\left(a^2+b^2+c^2\right)^2=1< =>a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]=1\)

\(< =>a^4+b^4+c^4+2.\dfrac{1}{4}=1< =>a^4+b^4+c^4+\dfrac{1}{2}=1< =>a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\left(đpcm\right)\)

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

25 tháng 3 2017

2a)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

\(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

2b)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

24 tháng 3 2017

Bài 1)

Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Giải

Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0

Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)\(\dfrac{1}{x+2y}\)

\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)

Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y

1 tháng 4 2017

Bài 1: \(a+b\ge1\). cm \(a^4+b^4\ge\dfrac{1}{8}\)

ta có : \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)(BĐT bunyakovsky)

Áp dụng BĐt bunyakovsky 1 lần nữa:

\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.\dfrac{1}{4}=\dfrac{1}{8}\)

dấu = xảy ra khi \(a=b=\dfrac{1}{2}\)

Bài 2:

Áp dụng BĐT bunyakovsky dạng đa thức và phân thức:

\(\left(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\right)\left(a+b+c\right)\ge\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2\ge\left[\dfrac{\left(a+b+c\right)^2}{a+b+c}\right]^2=\left(a+b+c\right)^2\)

do đó \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\)

dấu = xảy ra khi a=b=c

1 tháng 4 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)

Lại theo Cauchy-Schwarz lần nữa:

\(\left[\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2+b^2\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge\dfrac{1}{4}\Leftrightarrow a^4+b^4\ge\dfrac{1}{8}\)

Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)

Bài 2:

Trước tiên ta chứng minh \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)

Ta chứng minh bổ đề: \(\dfrac{a^3}{b^2}\ge\dfrac{a^2}{b}+a-b\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Viết các BĐT tương tự và cộng lại

\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+a-b+\dfrac{b^2}{c}+b-c+\dfrac{c^2}{a}+c-a=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\left(1\right)\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(2\right)\)

Từ \((1);(2)\) ta thu được ĐPCM

14 tháng 4 2018

Ta có :

\(\dfrac{a^2}{a^2+3}>\dfrac{a^2}{a^2+b^2+c^2+4}\)

\(\dfrac{b^2}{b^2+2}>\dfrac{b^2}{a^2+b^2+c^2+4}\)

\(\dfrac{c^2}{c^2+1}>\dfrac{c^2}{a^2+b^2+c^2+4}\)

\(\dfrac{4}{a^2+4+c^2}\ge\dfrac{4}{a^2+b^2+c^2+4}\)

Cộng vế với vế lại ta được :

\(P>\dfrac{a^2+b^2+c^2+4}{a^2+b^2+c^2+4}=1\) (đpcm)

9 tháng 8 2016

Hãy chứng minh \(a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)

Ta có: \(a+b+c=0\)

\(\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(a^2+b^2+c^2=1\)

nên \(2ab+2ac+2bc=-1\)

\(\Leftrightarrow2\cdot\left(ab+ac+bc\right)=-1\)

\(\Leftrightarrow\left(ab+ac+bc\right)^2=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)

Ta có: \(a^2+b^2+c^2=1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4+\frac{1}{2}=1\)

hay \(a^4+b^4+c^4=1-\frac{1}{2}=\frac{1}{2}\)(đpcm)

24 tháng 3 2020

Ta có: a+b+c=0

=> (a+b+c)2 = \(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(a^2+b^2+c^2=1\) => 1 + 2(ab + bc + ac) = 0

=> 2(ab + bc + ac) = -1 => ab + bc + ac = \(\frac{-1}{2}\)

=> (ab + bc + ac)2 = \(\left(\frac{-1}{2}\right)^2\)

=> a2b2 + b2c2 + a2c2 + 2(ab2c+abc2+a2bc) = \(\frac{1}{4}\)

=> a2b2 + b2c2 + a2c2 + 2abc(a+b+c) = \(\frac{1}{4}\)

mà a+b+c = 0 => a2b2 + b2c2 + a2c2 = \(\frac{1}{4}\)

Do a2 + b2 + c2 =1

=> (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2)=1

=> a4 + b4 + c4 + 2.\(\frac{1}{4}\) = 1

=> a4 + b4 + c4 = 1 - 2.\(\frac{1}{4}\) =\(\frac{1}{2}\)

Bạn không hiểu chỗ nào thì hỏi lại mình nhé
23 tháng 3 2020

Ta có: a+b+c=0
=> \(\left(a+b+c\right)^2=0\)
=> \(a^2+b^2+c^2+2ab+2bc+2ac=0\)
=> 2ab + 2bc + 2ac = -1 (do \(a^2+b^2+c^2=1\) )
=> \(\left(2ab+2bc+2ac\right)^2=\left(-1\right)^2\)
=> \(4a^2b^2+4b^2c^2+4a^2c^2+8ab^2c+8abc^2+8a^2bc=1\)

=>\(4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)=1\)

=>\(2\left(2a^2b^2+2b^2c^2+2a^2c^2\right)=1\) (do a+b+c=0)

=>\(2a^2b^2+2b^2c^2+2a^2c^2=\frac{1}{2}\)

Lại có: \(a^2+b^2+c^2=1\)
=> \(\left(a^2+b^2+c^2\right)^2=1\) = 1
=> \(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=1\)

=> \(a^4+b^4+c^4+\frac{1}{2}=1\)
=> \(a^4+b^4+c^4=\frac{1}{2}\)

=> ĐPCM

23 tháng 3 2020

Ta có a+b+c=0=>\(\left(a+b+c\right)^2=0\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)(1)

\(a^2+b^2+c^2=1\)

Thay vào (1) có ab+bc+ca=\(-\frac{1}{2}\)

Ta có\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

=1-2\(\left[\left(ab+bc+ca\right)^2-2a^2bc-2ab^2c-2abc^2\right]\)

=1-2\(\left[\frac{1}{4}-2abc\left(a+b+c\right)\right]\)

=1-2\(\left(\frac{1}{4}-0\right)\)

=1-\(\frac{1}{2}\)=\(\frac{1}{2}\)(đpcm

13 tháng 11 2017

Lm dc hết chưa bn ơi.

13 tháng 11 2017

câu 2

a^4 + b^4 + c^4 + d^4 = 4abcd

<=> \(a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2b^2d^2=0\)

<=> \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)

<=> \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\)

3 tháng 10 2017

Ta có: \(a+b+c=0\)

\(\Rightarrow\)\((a+b+c)^2=0\)

\(\Rightarrow\)\(a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow\)\(1+2(ab+bc+ac)=0\) ( Vì \(a^2+b^2+c^2=1\) )

\(\Rightarrow\)\(ab+bc+cd=\)\(-\dfrac{1}{2}\)

\(\Rightarrow\)\((ab+bc+cd)^2=\)\(\dfrac{1}{4}\)

\(\Rightarrow\)\(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\)\(=\)\(\dfrac{1}{4}\)

\(\Rightarrow\)\(a^2b^2+a^2c^2+b^2c^2+2abc(a+b+c)\)\(=\dfrac{1}{4}\)

\(\Rightarrow\)\(a^2b^2 +a^2c^2+b^2c^2\)\(=\dfrac{1}{4}\) ( Vì \(a+b+c=0 \)) \((1)\)

Mặt khác: \(a^2+b^2+c^2=1\)

\(\Rightarrow\)\((a^2+b^2+c^2)^2=1\)

\(\Rightarrow\)\(a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)

\(\Rightarrow\)\(a^4+b^4+c^4+2(a^2b^2+a^2c^2+b^2c^2)=1\)

\(\Rightarrow\)\(a^4+b^4+c^4+2.\)\(\dfrac{1}{4}=1\) (Theo \(1\))

\(\Rightarrow\)\(a^4+b^4+c^4 \)\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)

\(\Rightarrow\) Đpcm.