\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)                         ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

xin lỗi bạn 

đáp án mình là 495

13 tháng 8 2017

Câu hỏi của Momozono Nanami - Toán lớp 8 - Học toán với OnlineMath

1 tháng 9 2017

ta có x+y+z=0 =>x^2=(y+z)^2 
y^2=(x+z)^2 
z^2=(x+y)^2 
do đó ax^2+by^2+cz^2 
=a(y+z)^2+b(x+z)^2+c(x+y)^2 
=a(y^2+2yz+z^2)+b(x^2+2xz+z^2) 
+c(x^2+2xy+y^2) 
=x^2(b+c)+y^2(a+c)+z^2(a+b) 
+2(ayz+bxz+cxy) (1) 
thay b+c=-a ,a+c=-b , a+b=-c do a+b+c=0 
và ayz+bxz+cxy=0 do a/x+b/y+c/z=0 vào (1) ta được 
ax^2+by^2+cz^2 = -(ax^2+by^2+cz^2) 
=> ax^2+by^2+cz^2=0

Ta có : \(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^2=\left(y+z\right)^2\\y^2=\left(z+x\right)^2\\z=\left(x+y\right)^2\end{cases}}\)

\(\Rightarrow ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

                                       \(=ay^2+az^2+bz^2+bx^2+cx^2+cy^2+2\left(ayz+bzx+cxy\right)\) 

                                       \(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\left(1\right)\)

Từ \(a+b+c=0\)                    \(\Rightarrow\hept{\begin{cases}b+c=-a\\c+a=-b\\a+b=-c\end{cases}}\) 

Thay vào \(\left(1\right)\), ta được :

\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2+2\left(ayz+bzx+cxy\right)\)

Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)\(\Rightarrow ayz+bzx+cxy=0\)

\(\Rightarrow ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)

\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)

3 tháng 3 2020

Violympic toán 8

3 tháng 3 2020

Đề thiếu???

Từ \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)

Từ \(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}}\)

Thay vào \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow\frac{-\left(b+c\right)}{-\left(y+z\right)}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Rightarrow2byz+2cyz+bz^2+cy^2=0\)

\(\Rightarrow-\left(b+c\right).-\left(y+z\right)^2+by^2+cz^2=0\)

\(\Rightarrow\text{ax}^2+by^2+cz^2=0\)(dpcm)

Suy ngược nha k chắc

23 tháng 5 2019

từ x + y + z = 0 suy ra x2 = ( y + z )2 , y2 = ( x + z )2 , z2 = ( x + y )2 

do đó :

ax2 + by2 + cz2 = a ( y + z )2 + b ( x + z )2 + c ( x + y )2

= a ( y2 + 2yz + z2 ) + b ( x2 + 2xz + z2 ) + c ( x2 + 2xy + y2 )

= x2 ( b + c ) + y2 ( a + c ) + z2 ( a + b ) + 2 ( ayz + bxz + cxy )                   ( 1 )

thay b + c = -a ; a + c = -b ; a + b = -c do a + b +c = 0 và thay ayz + bxz + cxy = 0 do \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)vào ( 1 )

Ta được : ax2 + by2 + cz2 = -ax2 - by2 - cz2 

nên 2 ( ax2 + by2 + cz2 ) = 0 \(\Rightarrow\)ax2 + by2 + cz2 = 0

10 tháng 10 2017

Nâng cao và phát triển toán 8 tập 1 bài 150*

4 tháng 10 2017

Ta có (a+b+c)*(x^2+y^2+z^2)=0

vì a+b+c=0 suy ra (a+b+c)*(x^2+y^2+z^2)=0

suy ra ax^2+by^2+cz^2=0

21 tháng 11 2017

Ta có (a+b+c)*(x^2+y^2+z^2)=0

vì a+b+c=0 suy ra (a+b+c)*(x^2+y^2+z^2)=0

suy ra ax^2+by^2+cz^2=0

1 tháng 6 2018

từ x + y + z = 0 suy ra x2 = ( y + z )2 , y2 = ( x + z )2 , z2 = ( x + y )2

Do đó : ax2 + by2 + cz2 = a ( y + z )2 + b ( x + z )2 + c ( x + y )2

= a ( y2 + 2yz + z2 ) + b ( x2 + 2xz + z2 ) + c ( x2 + 2xy + y2 )

= x2 ( b + c ) + y2 ( a + c ) + z2 ( a + b ) + 2 ( ayz + bxz + cxy )                          ( 1 )

Thay b + c = -a, a + c = -b , a + b = -c do a + b + c = 0 

Thay ayz + bxz + cxy = 0 do \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)   vào ( 1 ), ta được :

ax2 + by2 + cz2 = -ax2 - by2 - cz2

nên 2ax2 + 2by2 + 2cz2 = 0 \(\Rightarrow\)ax2 + by2 + cz2 = 0

9 tháng 6 2017

Áp dụng : A = - A => A = 0

Từ \(a+b+c=0\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(c+a\right)\\c=-\left(a+b\right)\end{cases}}\)

  \(x+y+z=0\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}\Rightarrow\hept{\begin{cases}x^2=\left(y+z\right)^2\\y^2=\left(x+z\right)^2\\z^2=\left(x+y\right)^2\end{cases}}}\)

Và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{ayz+bxz+cxy}{xyz}=0\)\(\Rightarrow ayz+bxz+cxy=0\)

Ta có : \(x^2a+y^2b+x^2c=\)\(\left(y+z\right)^2a+\left(x+z\right)^2b+\left(x+y\right)^2c\) 

=   \(x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)\)\(+2\left(ayz+bxz+cxy\right)\)

=  \(-\left(x^2a+y^2b+z^2c\right)\) => \(x^2a+y^2b+x^2c=\) 0 

9 tháng 6 2017

Ta có: \(\hept{\begin{cases}a=-b-c\\x=-y-z\end{cases}}\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow\frac{\left(-b-c\right)}{\left(-y-z\right)}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow2byz+2cyz+bz^2+cy^2=0\)

Ta lại có:

\(ax^2+by^2+cz^2=\left(-b-c\right)\left(-y-z\right)^2+by^2+cz^2\)

\(=-2byz-2cyz-bz^2-cy^2=0\)