\(MinP=\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

\(\sqrt{a^2+ab+b^2}=\sqrt{\left(a+b\right)^2-ab}\ge\sqrt{\left(a+b\right)^2-\dfrac{\left(a+b\right)^2}{4}}=\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}\left(a+b\right)}{2}.\)

Tương tự

=> P \(\ge\dfrac{\sqrt{3}}{2}.2\left(a+b+c\right)=\sqrt{3}.\)

Vậy \(Pmin=\sqrt{3}\) khi a =b=c = 1/3

13 tháng 12 2017

Ta có: \(a^2+ab+b^2\)

        \(=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\frac{3\left(a+b\right)^2}{4}}=\frac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự, ta có:  \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}}{2}\left(b+c\right)\)

                            \(\sqrt{c^2+ca+a^2}\ge\frac{\sqrt{3}}{2}\left(c+a\right)\)

Do đó ta có: \(Q\ge\frac{\sqrt{3}}{2}\left(a+b+b+c+c+a\right)=\sqrt{3}\)       ( Do a+b+c=1)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

6 tháng 7 2016

Trả lời hộ mình đi

10 tháng 8 2016

Cho các số thực không âm a,b,c. Chứng minh rằng:

4 tháng 7 2017

a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)

\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)

\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)

Ta cần chứng minh

\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)

Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Vậy có ĐPCM.

Câu b làm y chang.

2 tháng 7 2017

hình như sai đề

NV
5 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến

6 tháng 1 2018

Từ giả thiết, ta có 

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\Rightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)

=>\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)

Tháy vào, ta có M=\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}{\sqrt{b}+\sqrt{c}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}{\sqrt{a}+\sqrt{c}}\)

=\(\frac{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{c}}\)

=\(\sqrt{a}+\sqrt{c}+\sqrt{b}+\sqrt{a}+\sqrt{c}+\sqrt{b}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=4\)

Vậy M=4

^_^