Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Dễ thôi
Ta có:
\(ab+bc+ca+abc=4\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\) ( cái này cơ bản )
Theo AM - GM:
\(\left(a+b\right)^2+20=\left[\left(a+b\right)^2+4\right]+16\ge4\left(a+b\right)+16=4\left[\left(a+2\right)+\left(b+2\right)\right]\)
Áp dụng Cauchy Schwarz:
\(P\le\Sigma\frac{4}{4\left[\left(a+2\right)+\left(b+2\right)\right]}=\Sigma\frac{1}{\left(a+2\right)+\left(b+2\right)}\le\frac{1}{4}\Sigma\left(\frac{1}{a+2}+\frac{1}{b+2}\right)=\frac{1}{2}\)
Đẳng thức xảy ra tại a=b=c=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Áp dụng BĐT AM-GM ngược dấu ta có:
\(A=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ac}}=\frac{ab}{\sqrt{c(a+b+c)+ab}}+\frac{bc}{\sqrt{a(a+b+c)+bc}}+\frac{ca}{\sqrt{b(a+b+c)+ac}}\)
\(=\frac{ab}{\sqrt{(c+a)(c+b)}}+\frac{bc}{\sqrt{(a+b)(a+c)}}+\frac{ca}{\sqrt{(b+a)(b+c)}}\)
\(\leq \frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)+\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)+\frac{1}{2}\left(\frac{ca}{b+a}+\frac{ca}{b+c}\right)\)
\(A\leq \frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}(b+a+c)=\frac{1}{2}\)
Vậy \(A_{\max}=\frac{1}{2}\) tại \(a=b=c=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Đặt \((a+1,b+1,c+1)=(x,y,z)\Rightarrow (a,b,c)=(x-1,y-1,z-1)\)
Khi đó:
\(ab+bc+ac+abc=2\)
\(\Leftrightarrow (x-1)(y-1)+(y-1)(z-1)+(z-1)(x-1)+(x-1)(y-1)(z-1)=2\)
\(\Leftrightarrow xyz-(x+y+z)+2=2\Leftrightarrow xyz=x+y+z\)
Vậy bài toán trở thành: Cho $x,y,z>0$ thỏa mãn \(x+y+z=xyz\)
Tìm max \(P=\sum \frac{x}{x^2+1}\)
----------------------------------
Ta có: \(x+y+z=xyz\Rightarrow x(x+y+z)=x^2yz\)
\(\Rightarrow x(x+y+z)+yz=yz(x^2+1)\)
\(\Leftrightarrow (x+y)(x+z)=yz(x^2+1)\Rightarrow x^2+1=\frac{(x+y)(x+z)}{yz}\)
Do đó: \(\frac{x}{x^2+1}=\frac{x}{\frac{(x+y)(x+z)}{yz}}=\frac{xyz}{(x+y)(x+z)}\)
\(\Rightarrow P=\sum \frac{x}{x^2+1}=\sum \frac{xyz}{(x+y)(x+z)}=\frac{2xyz(x+y+z)}{(x+y)(y+z)(x+z)}\)
Theo BĐT AM-GM:
\((x+y)(y+z)(x+z)=(x+y+z)(xy+yz+xz)-xyz\)
\(\geq (x+y+z).(xy+yz+xz)-\frac{(x+y+z)(xy+yz+xz)}{9}=\frac{8}{9}(x+y+z)(xy+yz+xz)\)
\(\Rightarrow P\leq \frac{2xyz(x+y+z)}{\frac{8}{9}(x+y+z)(xy+yz+xz)}=\frac{9}{4}.\frac{xyz}{xy+yz+xz}(*)\)
Mà: \((xy+yz+xz)^2\geq 3xyz(x+y+z)=3(xyz)^2\)
\(\Rightarrow xy+yz+xz\geq \sqrt{3}xyz(**)\)
Từ \((*);(**)\Rightarrow P\leq \frac{9}{4}.\frac{1}{\sqrt{3}}=\frac{3\sqrt{3}}{4}\). Vậy \(P_{\max}=\frac{3\sqrt{3}}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2.
\(8ab-2=3\left(a^4+b^4\right)\ge6a^2b^2\Leftrightarrow3a^2b^2-4ab+1\le0\)
\(\Leftrightarrow\frac{1}{3}\le ab\le1\)
Khi đó:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}-\frac{2}{ab+1}=\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\le0\)
\(\Rightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}\le\frac{2}{ab+1}\)
\(\Rightarrow P\le\frac{2}{ab+1}+\frac{ab}{3a^2b^2+1}\)
Đặt \(ab=x\Rightarrow\frac{1}{3}\le x\le1\Rightarrow P\le\frac{2}{x+1}+\frac{x}{3x^2+1}\)
\(P\le\frac{2}{x+1}+\frac{x}{3x^2+1}-\frac{7}{4}+\frac{7}{4}=\frac{-21x^3+7x^2-3x+1}{4\left(x+1\right)\left(3x^2+1\right)}+\frac{7}{4}\)
\(P\le\frac{\left(7x^2+1\right)\left(1-3x\right)}{4\left(x+1\right)\left(3x^2+1\right)}+\frac{7}{4}\le\frac{7}{4}\) ; \(\forall x\ge\frac{1}{3}\)
\(P_{max}=\frac{7}{4}\) khi \(x=\frac{1}{3}\) hay \(a=b=\frac{1}{\sqrt{3}}\)
1.
Ta có: \(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\)
\(\Leftrightarrow a^2-4+2bc+abc\le0\)
\(\Leftrightarrow\left(a+2\right)\left(a-2\right)+bc\left(a+2\right)\le0\)
\(\Leftrightarrow\left(a+2\right)\left(bc+a-2\right)\le0\)
\(\Leftrightarrow bc+a\le2\) (1)
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 1
Giả sử đó là b và c \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc+1\ge b+c\Rightarrow abc+a\ge ab+ac\)
\(\Rightarrow abc\ge ab+ac-a\Rightarrow abc+2\ge ab+ac-a+2\)
Do đó ta chỉ cần chứng minh: \(ab+ac-a+2\ge ab+bc+ca\)
\(\Leftrightarrow a+bc\le2\) (đúng theo (1)) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).
Do đó đặt \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:
Cho \(y^2+5x=24\), tìm max:
\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)
\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)
\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)
Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)
Và dễ dàng chứng minh \(ab+bc+ca\le3\)
Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).
Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)
Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.
Khi đó P = 3. Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
b/ Đa số các bài bất 2 luôn đưa về dạng (a+b)(a-b)2 ( kinh nghiệm của t)
Ta có \(a^3+b^3\ge ab\left(a+b\right)\)
<=> \(12a^3-ab\left(a+b\right)\ge11a^3-b^3\)
<=> \(\left(3a-b\right)\left(4a^2+ab\right)\ge11a^3-b^3\)
<=> \(3a-b\ge\frac{11a^3-b^3}{4a^2+ab}\)
Hoặc cậu có thể đặt \(\frac{11a^3-b^3}{4a^2+ab}\le ma+nb\)
câu a dùng minkopki
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\dfrac{ab}{\sqrt{c+ab}}=\dfrac{ab}{\sqrt{c\left(a+b+c\right)+ab}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt{ab}}{\sqrt{a+c}}.\dfrac{\sqrt{ab}}{\sqrt{b+c}}\)
\(\Rightarrow\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Tương tự ta có:
\(\dfrac{bc}{\sqrt{a+bc}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\) ; \(\dfrac{ac}{\sqrt{b+ac}}\le\dfrac{1}{2}\left(\dfrac{ac}{a+b}+\dfrac{ac}{b+c}\right)\)
Cộng vế với vế ta được:
\(A\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{bc}{a+b}+\dfrac{ac}{a+b}\right)\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right)\)
\(\Rightarrow A\le\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)
\(\Rightarrow A_{max}=\dfrac{1}{2}\) khi \(a=b=c=\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
từ phép đặt đơn giản \(\left(x;y;z\right)=\left(a;b;\frac{1}{c}\right)\) ta thu được \(xy^2+yz^2+zx^2=3\) và cần tìm min \(P=x^4+y^4+z^4\)
ta có : \(x^4+x^4+x^4+1\ge4x^3\)\(\Leftrightarrow\)\(x^4\ge\frac{4}{3}x^3-\frac{1}{3}\)
\(\Rightarrow\)\(P\ge\frac{4}{3}\left(x^3+y^3+z^3\right)-1\ge\frac{4}{3}\left(xy^2+yz^2+zx^2\right)-1=3\)
dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=a=b=c=1\)
Với mọi a;b dương ta có:
\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2=\dfrac{1}{2}\left(a^2+b^2\right).\left(a^2+b^2\right)\ge\dfrac{1}{2}.2ab.\left(a^2+b^2\right)=ab\left(a^2+b^2\right)\)
Và: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
Do đó:
\(A\le\sum\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+2020=\sum\dfrac{1}{a^2+b^2+1}+2020\)
Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
\(\Rightarrow A\le\sum\dfrac{1}{x^3+y^3+1}+2020\le\sum\dfrac{1}{xy\left(x+y\right)+1}+2020\)
\(A\le\sum\dfrac{xyz}{xy\left(x+y\right)+xyz}+2020=\sum\dfrac{z}{x+y+z}+2020=1+2020=2021\)
Dấu "=" xảy ra khi \(a=b=c=1\)