Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy , ta có :
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
Dấu "=" xảy ra khi a = b = c = 1
Vậy Min P = 8 <=> a = b = c = 1
Đường ....... sai rồi :v
Áp dụng bđt Cauchy - Schwarz dạng engel (full name nhé) , ta có
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{9}{3+a+b+c}\ge\frac{9}{3+3}=\frac{3}{2}\)
Đẳng thức xảy ra <=> \(a=b=c=1\)
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
\(\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Dễ có:\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\left(\frac{3+a+b+c}{3}\right)^3\le8\)
Khi đó \(B\ge\frac{3}{2}\)
Đẳng thức xảy ra tại a=b=c=1
vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)
dấu = xảy ra khi \(a=b=c=1\)
vậy min của P là 8 khi a=b=c=1
Bạn có thể tham khảo tại:
https://olm.vn/hoi-dap/question/922685.html
Chúc bạn học giỏi
Có: \(\left(a-1\right)^2\ge0\)
=>\(a^2-2a+1\ge0\)
=>\(a^2+2a+1\ge4a\) (cộng cả 2 vế với 4a)
=>\(\left(a+1\right)^2\ge4a\) (1)
Tượng tự ta cũng có:
\(\left(b+1\right)^2\ge4b\) (2)
\(\left(c+1\right)^2\ge4c\) (3)
Nhân vế với vế (1),(2),(3) ta có:
\(\left(a+1\right)^2\cdot\left(b+1\right)^2\cdot\left(c+1\right)^2\ge64abc\)
=> \(\sqrt{\left(a+1\right)^2\cdot\left(b+1\right)^2\cdot\left(c+1\right)^2}\ge\sqrt{64}\) (vì abc=1)
=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)
Vậy GTNN của P là 8
Ta có : abc = 1
<=> a = \(\frac{1}{bc}\)
\(b=\frac{1}{ac}\)
\(c=\frac{1}{ab}\)
Ta có : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)
Áp dụng bđt cô si ta có :
\(\frac{1}{bc}+abc\ge2\sqrt{\frac{abc}{bc}}=2\sqrt{a}\)
\(\frac{1}{ac}+abc\ge2\sqrt{b}\)
\(\frac{1}{ab}+abc\ge2\sqrt{c}\)
Nên : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)\(\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8.1=8\)
Vây Pmin = 8 khi a = b = c = 1
Hai ô tô cùng khởi hành 1 lúc đi từ
A đến B dài 240km, vì mỗi giờ
ô tô thứ 1 đi nhanh hơn ô tô thứ 2 là 12km nên nó đến trước ô tô thứ 2 là 1h40'. Tí
nh vận tốc của mỗi ô tô?
Vì a;b;c > 0 nên \(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}>0\)
BĐT Cosi :
\(9a+\dfrac{1}{a}\ge2.\sqrt{9a.\dfrac{1}{a}}=2.3=6\\ 9b+\dfrac{1}{b}\ge6\\ 9c+\dfrac{1}{c}\ge6\\ \Rightarrow\left(9a+\dfrac{1}{a}\right)+\left(9b+\dfrac{1}{b}\right)+\left(9c+\dfrac{1}{c}\right)\ge18\\ \Rightarrow9\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge18\\ \Rightarrow9+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge18\\ \Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
Dấu "=" xảy ra khi a=b=c=1/3
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
Áp dụng BĐT Cauchy ta có:
\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)
\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)
\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)
Dấu "=" xảy ra <=> \(a=b=c=1\)
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\) \(\ge\)\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)
Vậy Min P = 8 <=> a = b = c = 1
Cauchy :
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)
Đẳng thức xảy ra <=> a = b = c = 1