Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
M = (3a/4+3/a) + ( c/4+4/c) + (b/2+9/2b) + a/4 + b/2 + 3c/4 >= 3 + 2 + 3 +(a+2b+3c)/4 >= 13
Dấu bằng xảy ra khi a=2,b=3,c=4
Áp dụng Côsi
\(S=\frac{3}{4}a+\frac{3}{a}+\frac{1}{2}b+\frac{9}{2b}+\frac{1}{4}c+\frac{4}{c}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)
\(=3+3+2+5=13\)
Dấu "=" xảy ra khi \(\frac{3a}{4}=\frac{3}{a};\text{ }\frac{b}{2}=\frac{9}{2b};\text{ }\frac{c}{4}=\frac{4}{c};\text{ }a+2b+3c=20\) hay \(a=2;\text{ }b=3;\text{ }c=4\)
\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)
\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)
\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)
\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)