Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
( a + b + c )2 = a2 + b2 + c2 + 2ab + 2 bc+ 2ac = 0
Mà a2 + b 2 + c2 = 1
=> 2ab + 2bc + 2ac = - 1
=> ab + bc + ac = \(\frac{-1}{2}\)
=> ( ab + bc + ac ) 2 = a2b2 + a2c2 + b2c 2 + 2ab2c + 2ac2b + 2a2bc = \(\left(\frac{-1}{2}\right)^2\)=\(\frac{1}{4}\)
=> a2b2 + a2c2 + b2c2 + 2abc ( a + b +c ) = \(\frac{1}{4}\)
mà a + b + c = 0 => 2abc ( a +b +c ) = 0
=> a2b2 + b2c2 + c2a2 = \(\frac{1}{4}\)
Ta có : ( a2 + b2 + c2 )2 = a4 + b4 + c4 + 2 ( a2b2 + b2c2 + c2a2 ) = 1
=> a4 +b4 + c4 + 2. \(\frac{1}{4}\) = 1
=> a4 + b4 + c4 = 1 - \(\frac{1}{2}\)
=> a4 + b4 + c4 = \(\frac{1}{2}\)
Ta có a + b + c = 0
<=> (a + b + c)2 = 0
<=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
<=> ab + bc + ca = \(-\frac{1}{2}\)
=> \(\left(ab+bc+ca\right)^2=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab^2c+2a^2bc+2abc^2=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\frac{1}{4}\)
Lại có a2 + b2 + c2 = 1
=> (a2 + b2 + c2)2 = 1
<= > a4 + b4 + c4 + 2[(ab)2 + (bc)2 + (ca)2] = 1
<=> \(a^4+b^4+c^4+2.\frac{1}{4}=1\)
<=> \(a^4+b^4+c^4=\frac{1}{2}\)
Từ a + b + c = 0 => ( a + b + c )2 = 0 <=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
<=> ab + bc + ca = -1/2 => ( ab + bc + ca )2 = 1/4
<=> a2b2 + b2c2 + c2a2 + 2ab2c + 2bc2a + 2a2bc = 1/4
<=> a2b2 + b2c2 + c2a2 + 2abc( a + b + c ) = 1/4
<=> a2b2 + b2c2 + c2a2 = 1/4 ( vì a + b + c = 0 )
Từ a2 + b2 + c2 = 1 => ( a2 + b2 + c2 )2 = 1 <=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 1
<=> a4 + b4 + c4 + 2( a2b2 + b2c2 + c2a2 ) = 1
<=> a4 + b4 + c4 + 1/2 = 1 <=> a4 + b4 + c4 = 1/2
Vậy A = 1/2
a = - (b + c)
<=> a2 = b2 + c2 + 2bc
<=> a2 - b2 - c2 = 2bc
<=> a4 + b4 + c4 + 2(b2 c2 - a2 b2 - a2 c2) = 4b2 c2
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 = 0,5
\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)
\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)
\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)
a + b +c =0 => ( a +b + c)^2 =0 => a^2 +b^2 +c^2 + 2ab +2bc + 2ac = 0
=> 1 + 2(ab + bc +ac) = 0 => 2(ab +bc +ac) = -1 ==> ab + bc +ac = -1/2
( ab + bc+ac)^2 = 1/4 => a^2.b^2 + b^2.c^2 + c^2.a^2 + 2ab^2.c +2ab.c^2 + 2 a^2.b.c = 1/4
=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc ( a+ b+ c) = 1/4
=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc . 0 = 1/4
=> 2( a^2 . b^2 + + b^2 . c^2 + c^2 . a^2 ) = 2.1/4 = 1/2
=> 2a^2 . b^2 + 2 b^2 . c^2 + 2c^2 . a^2 = 1/2
( a^2 + b^2 + c^2 )^2 = 1
=> a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2 c^2 . a^2 = 1
=> a^4 + b^ 4 + c^4 + 1/2 = 1
=> a^4 + b^4 + c^4 = 1/2
(a+b+c)2 = 0
<=> a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
<=> 2ab + 2bc + 2ac = -1
<=> ab + bc + ac = -1/2
<=> a2b2 + b2c2 + c2a2 + 2ab2c + 2abc2 + 2a2bc = 1/4
<=> a2b2 + b2c2 + c2a2 + 2abc(a+b+c) = 1/4
<=> a2b2 + b2c2 + c2a2 = 1/4
(a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 1
<=> a4 + b4 + c4 + 2.1/4 = 1
<=> a4 + b4 + c4 = 1 - 1/2 = 1/2.
Vậy M = 1/2
a+ b + c = 0 => (a+ b+ c)2 = 0 => a2 + b2 + c2 + 2(ab + bc + ca) = 0 => ab + bc + ca = -1/2
Ta có: (ab + bc + ca)2 = a2b2 + c2.b2 + a2.c2 + 2abc.(a + b + c)
=> (-1/2)2 = a2b2 + c2.b2 + a2.c2 + 0 => a2b2 + c2.b2 + a2.c2 = 1/4
Ta có: (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + c2.b2 + a2.c2) => 1 = M + 2. 1/4 => M = 1-1/2 = 1/2
Vậy M = 1/2
Ta có : \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-\frac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow\left(a^2b^2+b^2c^2+c^2a^2\right)+2abc\left(a+b+c\right)=\frac{1}{4}\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Mặt khác : \(\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Rightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac=0 => 2ab+2bc+2ac= -1 =>ab+bc+ac=-1/2
=>(ab+bc+ac)^2=1/4=0.25 =>a^2b^2+b^2c^2+a^2c^2+2a^2bc+ab^2c+abc^2=0.25
=>a^2b^2+b^2c^2+a^2c^2+2abc(a+b+c)=0.25
=>a^2b^2+b^2c^2+a^2c^2=0.25 =>2a^2b^2+2b^2c^2+2a^2c^2=0.5 (1)
Mà (a^2+b^2+c^2)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=1 (2)
Thay (1) vào (2) =>a^4+b^4+c^4=1-0.5=0.5
Vậy M=0.5