Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

làm cái đề ra ấy, ngại viết lại đề :P
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)

Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2}{\left(a+b\right)\left(a+c\right)}+\frac{a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\left(1\right)\)
Tương tự ta có:
\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{a+b}+\frac{b-a}{b+c}\left(2\right)\)
\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\left(3\right)\)
(1)(2)(3) => ĐPCM

\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)
\(b,5x^3y^2-25x^2y^3+40xy^4\)
\(=5xy^2\left(x^2-5xy+8y^2\right)\)
\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)
\(=-2x^2y^2\left(2x-3+4x^2y\right)\)
\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)
\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)
\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)
\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)
\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)
\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(a-b-c\right)\)
\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)
\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)
\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)
a,3x3y3−15x2y2=3x2y2(xy−5)a,3x3y3−15x2y2=3x2y2(xy−5)
b,5x3y2−25x2y3+40xy4b,5x3y2−25x2y3+40xy4
=5xy2(x2−5xy+8y2)=5xy2(x2−5xy+8y2)
c,−4x3y2+6x2y2−8x4y3c,−4x3y2+6x2y2−8x4y3
=−2x2y2(2x−3+4x2y)=−2x2y2(2x−3+4x2y)
d,a3x2y−52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y
=a3x2(y−52x2+23ay)=a3x2(y−52x2+23ay)
e,a(x+1)−b(x+1)=(x+1)(a−b)e,a(x+1)−b(x+1)=(x+1)(a−b)
f,2x(x−5y)+8y(5y−x)f,2x(x−5y)+8y(5y−x)
=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)
g,a(x2+1)+b(−1−x2)−c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)
=(x2+1)(a−b−c)=(x2+1)(a−b−c)
h,9(x−y)2−27(y−x)3h,9(x−y)2−27(y−x)3
=9(x−y)2+27(x−y)3

Bài 2:
Ta có: \(f\left(a\right)=6a^5-10a^4-5a^3+23a^2-29a+2005\)
\(=\left(6a^5-10a^4-2a^3\right)-\left(3a^3-5a^2-a\right)+\left(18a^2-30a-6\right)+2011\)
\(=2a^3\left(3a^2-5a-1\right)-a\left(3a^2-5a-1\right)+6\left(3a^2-5a-1\right)+2011\)
\(=\left(2a^3-a+6\right)\left(3a^2-5a-1\right)+2011\)
Mà \(3a^2-5a-1=0\)
\(\Rightarrow f\left(a\right)=2011\)
Vậy...
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Mà \(a^2+b^2+c^2=18\)
\(\Rightarrow2\left(ab+bc+ca\right)=-18\)
\(\Rightarrow ab+bc+ca=-18:2=-9\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2bc\left(a+b+c\right)=81\)
\(a^2b^2+a^2c^2+b^2c^2=81\)
Mặt khác : \(a^2+b^2+c^2=18\)
\(\Rightarrow a^4b^4+b^4c^4+a^4c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=18^2=324\)
\(\Rightarrow a^4+b^4+c^4+2.81=324\)
\(\Rightarrow a^4+b^4+c^4=324-162=162\)
\(M=a^2\left(1-a^2\right)+b^2\left(1-b^2\right)+c^2\left(1-c^2\right)\)
\(=a^2+b^2+c^2-\left(a^4+b^4+c^4\right)\)
Mà : \(a^2+b^2+c^2=18\)
\(a^4+b^4+c^4=162\)
\(\Rightarrow M=18-162=-144\)
Vậy : .......