\(\frac{a^4}{a^2-\left(b^2-c^2\right)^2}+\frac{b^4}{b^2-\left(c^2-a^2\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2020

Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?

NV
23 tháng 10 2020

Cộng vế với vế giả thiết:

\(a^2+4b+4+b^2+4c+4+c^2+4a+4=0\)

\(\Leftrightarrow\left(a^2+4a+4\right)+\left(b^2+4b+4\right)+\left(c^2+4c+4\right)=0\)

\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(c+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+2=0\\b+2=0\\c+2=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=-2\)

\(\Rightarrow P=1+1+1=3\)

16 tháng 8 2017

Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)

\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)