Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Cách 1:
Áp dụng BĐT S.Vacxo ta có:
\(\frac{1}{xy+1}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{3+xy+yz+xz}(1)\)
Theo BĐT Cauchy ta có bổ đề quen thuộc:
\(xy+yz+xz\leq x^2+y^2+z^2\leq 3(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9}{3+xy+yz+xz}\geq \frac{9}{3+3}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)
Cách 2:
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{1}{xy+1}+\frac{xy+1}{4}\geq 2.\sqrt{\frac{1}{xy+1}.\frac{xy+1}{4}}=1\)
\(\frac{1}{yz+1}+\frac{yz+1}{4}\geq 2.\sqrt{\frac{1}{yz+1}.\frac{yz+1}{4}}=1\)
\(\frac{1}{xz+1}+\frac{xz+1}{4}\geq 2.\sqrt{\frac{1}{xz+1}.\frac{xz+1}{4}}=1\)
Cộng tất cả các BĐT trên theo vế và rút gọn:
\(\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9-(xy+yz+xz)}{4}\geq \frac{9-3}{4}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)
\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)
2)
Theo hệ quả của bất đẳng thức Cauchy ta có
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )
Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)
Vậy \(C_{min}=\dfrac{9}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)
Lời giải:
a) Vì $abc=1$ nên ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc.+ac+c}+\frac{b.ac}{bc.ac+b.ac+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+c+1}=1\)
(đpcm)
b)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow \left\{\begin{matrix} x=ka\\ y=kb\\ z=kc\end{matrix}\right.\)
\(x+y+z=ka+kb+kc=k(a+b+c)=k\)
\(x^2+y^2+z^2=k^2a^2+k^2b^2+k^2c^2=k^2(a^2+b^2+c^2)=k^2\)
\(\Rightarrow A=xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{k^2-k^2}{2}=0\)
b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)
\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)
\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)
ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)
\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow\left(x+y\right)^2=z^2\)
\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)
Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)
a, (M-1)/70-71=m
m=(71^9+71^8....71+1)
71m=71^10+...71^2+71
70m=71^10-1
(M-1)/70=71^10+70
M-1=70(71^10+70)
M=70(71^10+70)-1
Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick
Áp dụng BĐT :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9
Trong đó : a = xy ; b = yz ; c = xz
⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )
Áp dụng BĐT cô - si :
x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )
y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)
z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)
Từ ( * ; **)
⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9
⇒ 3A ≥ 9
⇒ A ≥ 3
⇒ AMIN = 3 ⇔ x = y = z
Xin lỗi mình viết thiếu
Bổ sung: x2+y2+z2<3