Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐK: \(\frac{x+1}{x}>0\Leftrightarrow\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\)
Đặt \(t=\sqrt{\frac{x+1}{x}}\left(t>0\right)\) , bất pt đã cho trở thành:
\(\frac{1}{t^2}-2t>3\Leftrightarrow\frac{1-2t^3-3t^2}{t^2}>0\Leftrightarrow1-2t^3-3t^2>0\)
\(\Leftrightarrow\left(t+1\right)^2\left(1-2t\right)>0\Leftrightarrow1-2t>0\Leftrightarrow t< \frac{1}{2}\)
\(t< \frac{1}{2}\Rightarrow\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow\frac{3x+4}{4x}< 0\)
Lập bảng xét dấu ta được \(-\frac{4}{3}< x< 0\)
Kết hợp điều kiện ta được: \(-\frac{4}{3}< x< -1\) là giá trị cần tìm
3) Chứng minh BĐT phụ: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b>0\right)\)(1)
\(\left(1\right)\Leftrightarrow\frac{1}{a+b}\le\frac{a+b}{4ab}\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
Dấu '=' xảy ra ↔ a = b
Áp dụng BĐT trên, ta có:
\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự:
\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)
\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)
Cộng vế theo vế ba BĐT trên ta được:
\(P\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{z+x}+\frac{z}{z+y}+\frac{y}{y+z}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)
Dấu '=' xảy ra khi x = y = z = 1/3 (do x + y + z = 1)
Vậy GTLN của P là 3/4 khi x = y = z = 1/3
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
tham khảo thui nhé, chưa tìm đc lời giải phù hợp :'<
+) Với 3 số a,b,c đều lớn nhất ( a=b=c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a=H\) (1)
+) Không mất tính tổng quát, với a và b là số lớn nhất ( a=b>c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{2}{a}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (2)
+) Không mất tính tổng quát, với a là số lớn nhất ( a>b, a>c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (3)
(1), (2) và (3) \(\Rightarrow\)\(a\ge H\) với a là số lớn nhất hoặc 1 trong các số lớn nhất ( tương tự với b và c )
\(VT=\text{Σ}\left(\frac{1}{a}-1\right)=\frac{b+c}{a}.\frac{c+a}{b}.\frac{a+b}{c}\)
\(\ge\frac{8\sqrt{a^2b^2c^2}}{abc}=8\)(cô - si)
Dấu "=" xảy ra khi a = b = c =\(\frac{1}{3}\))
Mấy cái dấu "=" anh tự xét.
Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)
b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm
Đẳng thức xảy ra khi \(a=b=c\)
b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Cách làm tương tự câu a.
c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)
d) Em làm biếng quá anh làm nốt đi:P
Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(P=\frac{x^3yz}{y+z}+\frac{xy^3z}{x+z}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)