Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:a,b,c\ne0\)
\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{xa-a^2}{abc}+\frac{xb-b^2}{abc}+\frac{xc-c^2}{abc}=\frac{2bc}{abc}+\frac{2ac}{abc}+\frac{2ab}{abc}\)
\(\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2bc+2ac+2ab}{abc}\)
\(\Leftrightarrow xa-a^2+xb-b^2+xc-c^2=2bc+2ac+2ab\)
\(\Leftrightarrow xa+xb+xc=2bc+2ac+2ab+a^2+b^2+c^2\)
\(\Leftrightarrow x\left(a+b+c\right)=\left(a+b+c\right)^2\)
\(\Leftrightarrow x=a+b+c\)
Vậy x = a + b + c
\(ĐKXĐ:a,b,c\ne0\)
\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(\Leftrightarrow\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)
\(\Leftrightarrow1+\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}=4\)
\(-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)
\(\frac{4\left(a+b+c\right)}{a+b+c}-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)
\(\frac{4\left(a+b+c-x\right)}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
\(\Rightarrow\left(a+b+c-x\right)=0\)hoặc \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
+) Nếu \(\Rightarrow\left(a+b+c-x\right)=0\)thì x = a + b + c
+) Nếu \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)thì x thỏa mãn với mọi số
\(\Rightarrow\)\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\)\(\frac{a+b+c-x}{c}+\frac{b+c+a-x}{a}+\frac{c+a+b-x}{b}=4-\frac{4x}{a+b+c}\)(Vế trái cộng mỗi phân số với 1 thì vế phải +3)
\(\Leftrightarrow\)\(\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)=4\left(a+b+c-x\right).\frac{1}{a+b+c}\)
+ Xét \(a+b+c-x=0\Rightarrow x=a+b+c\)
+ Xét \(a+b+c-x\)khác 0 \(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\left(\frac{1}{a+b+c}\right)\)
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}>4\left(\frac{1}{a+b+c}\right)\)(bất đẳng thức COSY đó bạn)
như vậy là phương trình vô nghiệm
Sai rồi nha bạn Nguyễn Thuỳ Trang.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{a+b+c}\) vẫn được mà.
Đề có cho \(a,b,c\) dương đầu mà dùng Cauchy như đúng rồi vậy! Cẩn thận một chút.
a)Áp dụng BDT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}=3\sqrt[3]{\frac{1}{abc}}\)
Nhân theo vế ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
Dấu "=" xảy ra khi \(a=b=c\)
a) \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(\Leftrightarrow\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x-4\left(a+b+c\right)}{a+b+c}=0\)
\(\Leftrightarrow\left(x-a-b-x\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)
b)đề bài như trên
\(\Leftrightarrow\left(\frac{x-a-b-c}{bc}\right)+\left(\frac{x-b}{ca}-\frac{1}{a}-\frac{1}{c}\right)+\left(\frac{x-c}{ab}-\frac{1}{a}-\frac{1}{b}\right)=0\)
\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)
\(c,\frac{x-a-b}{c}-1+\frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1=0.\)
\(\frac{x-a-b-c}{c}+\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}=0\)
\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
=>\(\orbr{\begin{cases}a+b+c=x\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}\)
Vậy.......
Bài 1 :
Ta có : \(\frac{x^2+x+1}{x^2+1}=0\)
=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}=0\)
Ta thấy \(\left\{{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\\x^2+1>0\end{matrix}\right.\)
=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}>0\)
Vậy phương trình vô nghiệm .
Bài 3 :
a, ĐKXĐ : \(\left\{{}\begin{matrix}m-2\ne0\\m\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}m\ne2\\m\ne0\end{matrix}\right.\)
Ta có : \(A=\frac{m+1}{m-2}-\frac{1}{m}\)
=> \(A=\frac{\left(m+1\right)m}{\left(m-2\right)m}-\frac{m-2}{m\left(m-2\right)}\)
=> \(A=\frac{m^2+m-m+2}{\left(m-2\right)m}=\frac{m^2+2}{m\left(m-2\right)}\)
Ta có : \(B=\frac{m+2}{m-2}+\frac{1}{m}\)
=> \(B=\frac{\left(m+2\right)m}{\left(m-2\right)m}+\frac{m-2}{m\left(m-2\right)}\)
=> \(B=\frac{m^2+2m+m-2}{\left(m-2\right)m}=\frac{m^2+3m-2}{m\left(m-2\right)}\)
c, Thay A = 1 ta được phương trình :\(\frac{m^2+2}{m\left(m-2\right)}=1\)
=> \(m^2+2=m\left(m-2\right)\)
=> \(-2m=2\)
=> \(m=-1\) ( TM )
Vậy m có giá trị bằng 1 khi A = 1 .
b, - Để A = B thì : \(\frac{m^2+2}{m\left(m-2\right)}=\frac{m^2+3m-2}{m\left(m-2\right)}\)
=> \(m^2+2=m^2+3m-2\)
=> \(3m=4\)
=> \(m=\frac{4}{3}\)
Vậy với A = B thì m có giá trị là 4/3 .
d, Ta có : A + B = 0 .
=> \(\frac{m^2+2}{m\left(m-2\right)}+\frac{m^2+3m-2}{m\left(m-2\right)}=0\)
=> \(2m^2+3m=0\)
=> \(m\left(2m+3\right)\)=0
=> \(\left[{}\begin{matrix}m=0\\m=-\frac{3}{2}\end{matrix}\right.\)
Vậy m = 0 hoăc m = -3/2 khi A + B = 0 .
ĐKXĐ : a;b;c>0;a≠−(b+c);b≠−(c+a);c≠−(a+b)a;b;c≠0;a≠−(b+c);b≠−(c+a);c≠−(a+b)
a+b−xc+b+c−xa+c+a−xb+4xa+b+c=1a+b−xc+b+c−xa+c+a−xb+4xa+b+c=1
⇔(a+b−xc+1)+(b+c−xa+1)+(c+a−xb+1)+4xa+b+c−3−1=0⇔(a+b−xc+1)+(b+c−xa+1)+(c+a−xb+1)+4xa+b+c−3−1=0
⇔a+b+c−xc+a+b+c−xa+a+b+c−xb+4xa+b+c−4=0⇔a+b+c−xc+a+b+c−xa+a+b+c−xb+4xa+b+c−4=0
⇔(a+b+c−x)(1a+1b+1c)+4(x−a−b−c)a+b+c=0⇔(a+b+c−x)(1a+1b+1c)+4(x−a−b−c)a+b+c=0
⇔(a+b+c−x)(1a+1b+1c−4a+b+c)=0⇔(a+b+c−x)(1a+1b+1c−4a+b+c)=0
Do 1a+1b+1c−4a+b+c≠01a+1b+1c−4a+b+c≠0
⇒a+b+c−x=0⇔x=a+b+c⇒a+b+c−x=0⇔x=a+b+c
Vậy ...
Ta có pt : \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\) (1)
( ĐK: Do bài cho a,b,c > 0 rồi nên không cần nhé bạn )
Pt (1) \(\Leftrightarrow\left(\frac{a+b-x}{c}+1\right)+\left(\frac{b+c-x}{a}+1\right)+\left(\frac{c+a-x}{b}+1\right)+\left(\frac{4x}{a+b+c}-4\right)=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}-\frac{4\left(a+b+c-x\right)}{a+b+c}=0\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
Do : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\ne0\forall a,b,c>0\)
Nên : \(a+b+c-x=0\)
\(\Leftrightarrow a+b+c=x\)
Vậy : pt (1) có tập nghiệm \(S=\left\{a+b+c\right\}\)