\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Xét \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1+x+1-x+x^2}{2}=\frac{x^2+2}{2}\)

      \(\Rightarrow\sqrt{\frac{1}{1+x^3}}\ge\frac{2}{x^2+2}\)

Xét \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\frac{\left(b+c\right)^3}{a^3}}}\)  \(=\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\)

       \(\Rightarrow\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\ge\frac{2}{\frac{\left(b+c\right)^2}{a^2}+2}\) 

         \(=\frac{2a^2}{b^2+c^2+2bc+2a^2}\ge\frac{2a^2}{2b^2+2c^2+2a^2}\) (1)  (cái này bạn tự quy đồng sau đó áp dụng cosi cho 2bc)

Tương tự  \(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{2b^2}{2a^2+2b^2+2c^2}\)  (2)     \(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{2c^2}{2a^2+2b^2+2c^2}\)  (3)

 Cộng các vế của (1),(2) và (3) ta có đpcm

                                                                                   

19 tháng 11 2019

Đặt \(x=\frac{b+c}{a}>0\) .Ta cần CM:

\(\sqrt{1+x^3}\le1+\frac{1}{2}x^2\Leftrightarrow\left(x^2+2\right)^2\ge4\left(x^3+1\right)\)

\(\Leftrightarrow x^4-4x^3+4x^2\ge0\Leftrightarrow x^2\left(x-2\right)^2\ge0\)

BĐT cuối đúng => đpcm 

ĐT xảy ra<=> \(b+c=2a\)

19 tháng 11 2019

Làm tiếp:) 

Ta có: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2};\)

\(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Cộng theo vế 3 BĐT trên ta đc đpcm .

ĐT xảy ra<=> a=b=c

18 tháng 10 2020

Xét bất đẳng thức phụ\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)(*)

Thật vậy: (*)\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\)

Áp dụng kết hợp bất đẳng thức Bunyakovsky dạng phân thức và bất đẳng thức AM - GM, ta được: \(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^4}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)^6}{4}}=\left(b+c\right)^3\)

Vậy bất đẳng thức phụ trên là đúng. Tương tự rồi cộng lại ta được \(VT\ge1\)

Đẳng thức xảy ra khi 3 biến bằng nhau hoặc có 2 biến dần về 0

7 tháng 9 2018

Ủa @@ Mình vừa đăng câu trả lời rồi mà sao giờ không thấy nhỉ @@

7 tháng 9 2018

Ta có: \(\left(a^2+b^2+c^2\right)\ge\frac{1}{3}\left(a+b+c\right)^2\Rightarrow\sqrt{3}\sqrt{a^2+b^2+c^2}\ge a+b+c\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\sqrt{3}\sqrt{a^2+b^2+c^2}}=\frac{3\sqrt{3}}{\sqrt{a^2+b^2+c^2}}\)
\(\Rightarrow\frac{1}{3}\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{3}.\frac{1}{3}\left(a+b+c\right)^2.\frac{9}{a+b+c}=a+b+c\)       \(\left(1\right)\)
và \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a^2+b^2+c^2\right).\frac{3\sqrt{3}}{\sqrt{a^2+b^2+c^2}}\)
\(\Rightarrow\frac{1}{3\sqrt{3}}\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\sqrt{a^2+b^2+c^2}\)                                        \(\left(2\right)\)
Cộng vế với vế của (1) và (2) ta có đpcm
Dấu "=" xảy ra khi a=b=c