\(a,b,c>0\). CMR:

\(\sqrt{\dfrac{a^3}{5a^2+\left(b+c\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Ê t không phải cậu ta thì giải có được không?

11 tháng 4 2017

Ta có:

\(\left(\sqrt{\dfrac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c^3}{5c^2+\left(a+b\right)^2}}\right)^2\le\left(a+b+c\right)\left(\dfrac{a^2}{5a^2+\left(b+c\right)^2}+\dfrac{b^2}{5b^2+\left(c+a\right)^2}+\dfrac{c^2}{5c^2+\left(a+b\right)^2}\right)\left(1\right)\)

Giờ ta chứng minh:

\(P=\dfrac{a^2}{5a^2+\left(b+c\right)^2}+\dfrac{b^2}{5b^2+\left(c+a\right)^2}+\dfrac{c^2}{5c^2+\left(a+b\right)^2}\le\dfrac{1}{3}\)

Ta có:

\(\dfrac{a^2}{5a^2+\left(b+c\right)^2}\le\dfrac{a^2}{9}\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{2a^2+bc}+\dfrac{1}{2a^2+bc}\right)=\dfrac{1}{9}\left(\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{2a^2}{2a^2+bc}\right)=\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{a^2}{a^2+b^2+c^2}-\dfrac{bc}{2a^2+bc}\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\dfrac{b^2}{5b^2+\left(c+a\right)^2}\le\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{b^2}{a^2+b^2+c^2}-\dfrac{ca}{2b^2+ca}\right)\\\dfrac{c^2}{5c^2+\left(a+b\right)^2}\le\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{c^2}{a^2+b^2+c^2}-\dfrac{ab}{2c^2+ab}\right)\end{matrix}\right.\)

Cộng vế theo vế ta được

\(P\le\dfrac{4}{9}-\dfrac{1}{9}\left(\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\right)\)

\(\le\dfrac{4}{9}-\dfrac{1}{9}.\dfrac{\left(ab+bc+ca\right)^2}{bc\left(2a^2+bc\right)+ca\left(2b^2+ca\right)+ab\left(2c^2+ab\right)}=\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{1}{3}\left(2\right)\)

Từ (1) và (2) ta có

\(\sqrt{\dfrac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c^3}{5c^2+\left(a+b\right)^2}}^2\le\sqrt{\dfrac{a+b+c}{3}}\)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
12 tháng 4 2017

Không ai thảo luận câu này sao. T khởi động trước nhá.

Ta có: \(\cos\left(\dfrac{A-B}{2}\right)=\dfrac{\cos\left(\dfrac{A-B}{2}\right).\cos\left(\dfrac{A+B}{2}\right)}{\sin\dfrac{C}{2}}\)

\(=\dfrac{\cos A+\cos B}{2\sqrt{\dfrac{1-\cos C}{2}}}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{a^2+c^2-b^2}{2ca}}{2\sqrt{\dfrac{1-\dfrac{a^2+b^2-c^2}{2ab}}{2}}}\)

\(=\dfrac{\dfrac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{abc}}{2\sqrt{\dfrac{c^2-\left(a-b\right)^2}{ab}}}=\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\)

Ta sẽ chứng minh: \(\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\)

\(\Leftrightarrow\dfrac{2abc^2}{c^2-\left(a-b\right)^2}\ge a^2+b^2\)

\(\Leftrightarrow2abc^2-\left(a^2+b^2\right)\left(c^2-\left(a-b\right)^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2-c^2\right)\ge0\) (đúng vì tam giác ABC nhọn)

\(\Rightarrow\cos\left(\dfrac{A-B}{2}\right)\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\cos\left(\dfrac{B-C}{2}\right)\le\dfrac{b+c}{\sqrt{2\left(b^2+c^2\right)}}\left(2\right)\\\cos\left(\dfrac{C-A}{2}\right)\le\dfrac{c+a}{\sqrt{2\left(c^2+a^2\right)}}\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được ĐPCM.

18 tháng 4 2017

Thảo luận mình là người thứ 2

Chẳng thấy đề có kết nối giữa hai đại lượng [(ABC);(a,b,c)]

gì cả --> thiếu mối liên lạc cần thiết -->đề chưa thực sự rõ rằng --->Đề có suy biến --->lời giải (nếu có) phải là lời giải biện luận theo đề--->chưa thể chấp nhận lời giải trên

16 tháng 10 2022

b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)

\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)

c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)

\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)

\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)

d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)

2 tháng 10 2018

ko biet

22 tháng 6 2017

máy lag + mệt = nản, vô đây tham khảo HERE

22 tháng 6 2017

ta có :\(a^2-ab+b^2=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\dfrac{3}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)(theo BĐT AM-GM)

\(\Rightarrow P\ge\sum\dfrac{a+b}{2\sqrt{ab+1}}\)

ÁP dụng BĐT AM-GM:

\(\dfrac{a+b}{2\sqrt{ab+1}}+\dfrac{b+c}{2\sqrt{bc+1}}+\dfrac{c+a}{2\sqrt{ca+1}}\ge3\sqrt[3]{\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\sqrt{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}}}=\dfrac{3}{2}.\dfrac{1}{\sqrt[3]{\sqrt{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}}}\)

\(\sqrt[3]{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}\le\dfrac{1}{3}\left(ab+bc+ca+3\right)\)

\(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2\sqrt{\left(ab+bc+ca+3\right)}}\)(*)

ta liên tưởng đến BĐT phụ:\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

Cm: phân tích :\(VT=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(x+z\right)+2xyz\)

\(=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)+3xyz-xyz\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\)

\(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

nên \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+xz\right)=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

Áp dụng:

\(1=\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

mặt khác,theo AM-GM,dễ dàng chứng minh được \(a+b+c\ge\dfrac{3}{2}\)

nên \(1\ge\dfrac{8}{9}.\dfrac{3}{2}\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le\dfrac{3}{4}\)

từ (*)\(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2\sqrt{\dfrac{3}{4}+3}}=\dfrac{3}{\sqrt{5}}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{2}\)

30 tháng 4 2018

Bài 1:

a)Với x > 0;x ≠ 4 ta có:

\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)

\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4}{x-4}\)

c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)

30 tháng 4 2018

Bài 2:

a)Với a > 0;a ≠ 1;a ≠ 2 ta có

\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)

b)Ta có:

\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)

P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)

\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)

\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)

\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)

\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)

\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)

\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)

\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)

Vậy a = 6

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3