\(\frac{a}{a+b}\)=\(\frac{b}{b+c}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}< 1\)(đpcm)

*bài này hình như sai đề nhé, bn xem lại hộ mik.

27 tháng 7 2019

đề là >1 mà

24 tháng 11 2019

đề bài?

24 tháng 11 2019

tìm \(p=\frac{a^{10}.b^5.c^{2019}}{b^{2018}}\)

1 tháng 12 2019

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

 \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\)

Thay a = b = c vào P

\(\Rightarrow P=\frac{b^{10}.b^5.b^{2019}}{b^{2018}}=\frac{b^{2034}}{b^{2018}}=b^{16}\)

14 tháng 10 2018

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2007.\frac{1}{90}\)

\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{223}{10}\)

\(\Leftrightarrow\)\(1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}=\frac{223}{10}\)

\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{193}{10}\)

Vậy \(S=\frac{193}{10}\)

Chúc bạn học tốt ~ 

14 tháng 10 2018

Cách 1: Nhân cả hai vế của đẳng thức cho \(a+b+c\)ta được:

\(\frac{a+b+c}{a+b}=\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{90}\)

\(\Rightarrow a+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{a+c}=\frac{2007}{90}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2007}{90}-3=22,3-3=19,3\)

12 tháng 3 2020

Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+c+b};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

=> M>1 (1)
Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{a+b}{a+b+c};\frac{c}{a+c}< \frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}=2\)

=> M<2 (2)

Từ (1)(2) => 1<M<2 => M không là số nguyên (đpcm)

12 tháng 3 2020

Tớ thấy mọi người hay chứng minh M là số nguyên 

15 tháng 10 2018

lấy phân số thứ nhất nhân cả tử và mẫu vs a

lấy phân số thứ 2 nhân cả tử và mẫu vs b

lấy phân số thứ 3 nhân cả tử và mẫu vs c 

Áp dụng tính chất dãy tỉ số bằng nhau. cộng 3 ps sau khi nhân lại vs nhau.

đến đó tự làm

15 tháng 10 2018

thanks con kia

14 tháng 9 2019

b)Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

14 tháng 9 2019

\(a^5-a=a\left(a^4-1\right)\)

\(=a\left(a^2+1\right)\left(a^2-1\right)\)

\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)

Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)